首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiou CC  Luo JD  Chen TL 《Nature protocols》2006,1(6):2604-2612
The detection of rare mutant DNA from a background of wild-type alleles usually requires laborious manipulations, such as restriction enzyme digestion and gel electrophoresis. Here, we describe a protocol for homogeneous detection of rare mutant DNA in a single tube. The protocol uses a peptide nucleic acid (PNA) as both PCR clamp and sensor probe. The PNA probe binds tightly to perfectly matched wild-type DNA template but not to mismatched mutant DNA sequences, which specifically inhibits the PCR amplification of wild-type alleles without interfering with the amplification of mutant DNA. A fluorescein tag (which undergoes fluorescence resonance energy transfer with the adjacent fluorophore of an anchor probe when both are annealed to the template DNA) also allows the PNA probe to generate unambiguous melting curves to detect mutant DNA during real-time fluorescent monitoring. The whole assay takes about only 1 h. This protocol has been used for detecting mutant K-ras DNA and could be applied to the detection of other rare mutant DNAs.  相似文献   

2.
Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive allele-specific amplification method in which preferential amplification of the mutant allele occurs by using a primer that has more mismatches to the wild-type allele than to the mutant allele (mutant-specific primer, MSP). Additionally, a non-extendable primer with more mismatches to the mutant allele than to the wild-type allele (blocker primer, BP) competes with the MSP for binding to the wild-type allele, thereby reducing background amplification from the wild-type allele. ACB-PCR primer design is largely dependent upon the basepair substitution being measured, making it unclear if this method is broadly applicable. In an earlier study, an H-ras codon 61 CAA-->AAA mutation had been detected by ACB-PCR at a sensitivity of 10(-5). In this study, ACB-PCR was applied to two human K-ras codon 12 mutations: GGT-->GTT and GGT-->GAT. The method was optimized by systematically altering the concentrations of Perfect Match PCR Enhancer, MSP, BP, and dNTPs. For each mutation, mutant fractions as low as 10(-5) were detected, indicating that this assay can be used on a variety of base substitution mutations. In addition, the results suggest that the 3'-terminal mismatches between the MSP and wild-type allele may be used to predict the ACB-PCR conditions that will be appropriate for the detection of other base substitution mutations. The range of concentrations for each of these components is narrow, making this method relatively easy to apply to additional mutational targets.  相似文献   

3.
Peptide nucleic acid (PNA) is an artificially synthesized polymer. PNA oligomers show greater specificity in binding to complementary DNAs. Using this PNA, fluorescence melting curve analysis (FMCA) for dual detection was established. Genomic DNA of Mycoplasma fermentans and Mycoplasma hyorhinis was used as a template DNA model. By using one PNA probe, M. fermentans and M. hyorhinis could be detected and distinguished simultaneously in a single tube. The developed PNA probe is a dual‐labeled probe with fluorescence and quencher dye. The PNA probe perfectly matches the M. fermentans 16s rRNA gene, with a melting temperature of 72°C. On the other hand, the developed PNA probe resulted in a mismatch with the 16s rRNA gene of M. hyorhinis, with a melting temperature of 44–45°C. The melting temperature of M. hyorhinis was 27–28°C lower than that of M. fermentans. Due to PNA's high specificity, this larger melting temperature gap is easy to create. FMCA using PNA offers an alternative method for specific DNA detection. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:730–735, 2015  相似文献   

4.

Background  

Nucleic acids detection using microarrays requires labelling of target nucleic acids with fluorophores or other reporter molecules prior to hybridization.  相似文献   

5.
6.
Apolipoprotein B (apoB) mRNA editing leads to a single base change in its mRNA and the production of apoB-48. Currently, the degree of apoB mRNA editing is analyzed by the RT-PCR primer extension method. While this method is quantitative, it is labor intensive, utilizes radioactivity for labeling and may not be sensitive enough to discriminate between low levels of editing and inherent assay background levels. Peptide nucleic acid (PNA) oligonucletides have been used in single point mutation detection through PCR clamping. In the present work, we developed a PCR based assay which can detect the single base change responsible for the apoB-48 production. We found that as low as 0.5% of the edited form can be clearly detected by PNA mediated PCR clamping. When combined with the primer extension assay, an approximately 180-fold enrichment of the edited percentage is observed, reflecting selected PCR amplification of templates containing the edited base.  相似文献   

7.
8.
Total DNA was extracted formSecale cereale L. cv. ‘Petkus’ and labeled with biotin-11-dUPT. Labeled rye DNA and non-labeled wheat DNA in a mixture of 1∶1 were used as a probe on chromosome preparations of Welsh triticale and Kavkaz wheat, a wheat translocation stock. Hybridization of denatured probe and chromosomes took place overnight at 37°C in the presence of 10% (w/v) dextran sulfate, 50% (v/v) formamide, 10 mM PIPES, 0.1 mMEDTA and 0.3 M NaC1. Biotin-labeled rye DNA was detected using streptavidin-horseradish peroxidase conjugate. Staining was made with diaminobenzidine tetrahydrochloride and hydrogen peroxide. Observations made on Giesma counter-stained slides indicated that the rye chromosomes in Welsh triticale and the two short arms of a pair of satellite chromosomes (1RS) in Kavkaz wheat were preferentially labeled. Hybridization signals were seen as dark brown to bluish black in color. The technique described above is simple. It does not require the isolation of a species-specific probe. Itallows rapid identification of hybrids and/or chromosome translocations in wide hybridizations.  相似文献   

9.
10.
A successful method has been developed for the detection of live Yersinia pestis, the plague bacillus, which incorporates nascent RNA synthesis. A fluorescent in situ hybridization (FISH) assay using peptide nucleic acid (PNA) probes was developed specifically to differentiate Y. pestis strains from closely related bacteria. PNA probes were chosen to target high copy mRNA of the Y. pestis caf1 gene, encoding the Fraction 1 (F1) antigen, and 16S ribosomal RNA. Among Yersinia strains tested, PNA probes Yp-16S-426 and Yp-F1-55 exhibited binding specificities of 100% and 98%, respectively. Y. pestis grown in the presence of competing bacteria, as might be encountered when recovering Y. pestis from environmental surfaces in a post-release bioterrorism event, was recognized by PNA probes and neither hybridization nor fluorescence was inhibited by competing bacterial strains which exhibited faster growth rates. Using fluorescence microscopy, individual Y. pestis bacteria were clearly differentiated from competing bacteria with an average detection sensitivity of 7.9x10(3) cells by fluorescence microscopy. In the current system, this would require an average of 2.56x10(5) viable Y. pestis organisms be recovered from a post-release environmental sample in order to achieve the minimum threshold for detection. The PNA-FISH assays described in this study allow for the sensitive and specific detection of viable Y. pestis bacteria in a timely manner.  相似文献   

11.
Synthesis of water-soluble 5-mer peptide nucleic acids (PNAs) functionalized at their 5'- and 3'-ends with two original precursors of pentamethine cyanine dye synthesis is reported. The successful use of these PNA probes for sensing DNA hairpin structures in vitro was also demonstrated where specific hairpin formation was associated with the appearance of a characteristic fluorescence signal at 660 nm. A comparative study between three different strategies where PNAs were targeting either the stem or the loop of the hairpin was carried out. Best sensitivity was obtained using PNA sequences complementary to the loop sequence and directing both functional moieties toward the base of loop. Unprecedented proof-of-concept for the simultaneous sensing of hairpin and quadruplex DNAs with a nonoverlapping two-color system (C3 and C5) is also demonstrated.  相似文献   

12.
While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA–dsDNA triplexes—mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA oligomers bind complementary dsDNA targets via triplex formation with (sub)nanomolar affinities (at pH 7.2, 150 mM Na+). Binding affinity can be modulated more than 1000-fold by changes in pH, PNA oligomer length, PNA net charge and/or by substitution of pseudoisocytosine for cytosine, and conjugation of the DNA intercalator 9-aminoacridine. Furthermore, 9-aminoacridine conjugation also strongly enhanced triplex invasion. Specificity for the fully matched target versus one containing single centrally located mismatches was more than 150-fold. Together the data support the use of homopyrimidine PNAs as efficient and sequence selective tools in triplex targeting strategies under physiological relevant conditions.  相似文献   

13.
Locked nucleic acid (LNA) is a modified DNA with increased binding affinityfor complementary DNA sequences. Our strategy was to use this property of LNA to inhibit undesired PCR amplification (e.g.,from contaminating genomic DNA) in a cDNA-based assay. By placing a short complementary LNA sequence in intronic DNA, the aim was to inhibit the amplification of genomic DNA without affecting the amplification of reverse-transcribed spliced mRNA. LNA was designed to bind within intron 5 in the x-box binding protein 1 (XBP1) gene. An irrelevant LNA oligonucleotide served as a negative control. In both PCR and real-time PCR, the addition of LNA showed blocking of the amplification of genomic XBP1 but not cDNA XBP1. To test the effect of melting temperature (Tm) on the LNA, we investigated the number of LNA nucleotides that could be replaced with DNA nucleotides and still retain the blocking activity. More than three DNA nucleotides reduced the LNA inhibition ability. The sequence specificity of the LNA was tested by investigating the number of LNA nucleotide mismatches permitted. The introduction of one mismatch maintained the inhibition of genomic amplification whereas two mismatches reduced the amplification. Our results show that LNA may be used to enhance the specificity of PCR by eliminating unwanted PCR products.  相似文献   

14.
B Festy  M Daune 《Biochemistry》1973,12(24):4827-4834
  相似文献   

15.
We designed and synthesized the peptide nucleic acid (PNA)-peptide conjugates having anthracene chromophores and investigated their interactions with calf thymus DNA, [d(AT)(10)](2), [d(GC)(10)](2), and [d(AT)(10)dA(6)](2). Considering the synthesis compatibility and expecting that a novel DNA analogue, PNA, can improve DNA binding properties of alpha-helix peptides, we attempted to attach thymine PNA oligomers at the C-terminus of a 14 amino acid alpha-helix peptide that contained a pair of artificial intercalators, anthracene, as a probe, and to examine their interactions with DNA using anthracene UV, fluorescence and circular dichroism properties. The results observed in this study showed that the designed peptide folded in an alpha-helix structure in the presence of calf thymus DNA, [d(AT)(10)](2), and [d(AT)(10)dA(6)](2) with the chromophores at the side-chain being fixed with a left-handed chiral-sense orientation. The alpha-helix and the anthracene signals were not observed for [d(GC)(10)](2). Incorporation of thymine PNA oligomers into the designed alpha-helix peptide increased the DNA binding ability to [d(AT)(10)dA(6)](2) with increasing the length of the PNA without changing the conformations of the peptide backbone and the anthracene side-chains.  相似文献   

16.
The primary or secondary structure of single-stranded nucleic acids has been investigated with fluorescent oligonucleotides, i.e., oligonucleotides covalently linked to a fluorescent dye. Five different chromophores were used: 2-methoxy-6-chloro-9-amino-acridine, coumarin 500, fluorescein, rhodamine and ethidium. The chemical synthesis of derivatized oligonucleotides is described. Hybridization of two fluorescent oligonucleotides to adjacent nucleic acid sequences led to fluorescence excitation energy transfer between the donor and the acceptor dyes. This phenomenon was used to probe primary and secondary structures of DNA fragments and the orientation of oligodeoxynucleotides synthesized with the alpha-anomers of nucleoside units. Fluorescence energy transfer can be used to reveal the formation of hairpin structures and the translocation of genes between two chromosomes.  相似文献   

17.
Use of the polymerase chain reaction (PCR) to amplify variable numbers of tandem repeat (VNTR) loci has become widely used in genetic typing. Unfortunately, preferential amplification of small allelic products relative to large allelic products may result in incorrect or ambiguous typing in a heterozygous sample. The mechanism for preferential amplification has not been elucidated. Recently, PNA oligomers (peptide nucleic acids) have been used to detect single base mutations through PCR clamping. PNA is a DNA mimic that exhibits several unique hybridization characteristics. In this report we present a new application of PNA which exploits its unique properties to provide enhanced amplification. Rather than clamping the PCR, PNA is used to block the template making it unavailable for interstrand and intrastrand interactions while allowing polymerase to displace the PNA molecules and extend the primer to completion. Preferential amplification is reduced and overall efficiency is enhanced.  相似文献   

18.
Type IIS restriction enzymes have been successfully used as "universal" restriction enzymes in DNA manipulations. We took a step further to develop a rapid technique for recombining DNA fragments, fully automatic single-tube recombination (FASTR), which enables multiple-fragment DNA recombination in a single step. Crude PCR products are directly mixed with both type IIS restriction endonuclease and DNA ligase to initiate a spontaneous and one-way recombination reaction. Highly efficient DNA recombination can be achieved by an inhibition of DNA polymerase with aphidicolin and a selective digestion of template DNAs by DpnI, a restriction enzyme to digest hemi-methylated DNA in the reaction solution; thereby the entire procedure takes less than 15 min. Owing to its simplicity, efficiency and rapidity, one-step FASTR can be applied to a wide range of DNA manipulations including those involving high-throughput applications where significant reduction in time and cost is expected.  相似文献   

19.
AIMS: The aim of this work was to develop a rapid molecular test for the detection of the Chlamydiaceae family, irrespective of the species or animal host. METHODS AND RESULTS: The method described herein is a polymerase chain reaction targeting the 16S rRNA gene of the Chlamydiaceae family, and the results demonstrate that the test reacts with five reference Chlamydiaceae but none of the 19 other bacterial species or five uninfected animal tissues tested. The results also indicate the enhanced sensitivity of this test when compared with conventional culture or serology techniques. This is demonstrated through parallel testing of six real clinical veterinary cases and confirmatory DNA sequence analysis. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: This test can be used by veterinary diagnostic laboratories for rapid detection of Chlamydiaceae in veterinary specimens, with no restriction of chlamydial species or animal host. The test does not differentiate chlamydial species, and if required, speciation must be carried out retrospectively using alternate methods. However, for the purpose of prescribing therapy for chlamydiosis, this test would be an invaluable laboratory tool.  相似文献   

20.
The design and facile synthesis of novel chiral piperidine PNA from naturally occurring 4-hydroxy-L-proline is reported. The stereospecific ring-expansion reaction to get six-membered piperidine derivative from 5-membered pyrrolidine derivative is exploited for this synthesis. The resulting conformationally constrained PNA is utilized for the synthesis of PNA mixmers and the concept is substantiated by UV-Tm studies of the resulting PNA(2):DNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号