首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As nutrient diffusing substrates age, the availability of nutrients to periphyton may decline with time either because of diffusion or dilution of nutrients into the water column or because of the effects of grazing by herbivores. Typically, large amounts of nutrients are added to nutrient diffusing substrates (NDS) to insure continuous enrichment throughout experimental periods of 2 to 8 weeks. This study examined the release of phosphates and nitrates from NDS exposed to three different current velocities (0.07 m s–1, 0.11 m s–1, 0.20 m s–1) in recirculating laboratory flumes. Replicated agar samples from four treatments (control, nitrate (N), phosphate (P), and N+P) were sampled throughout 32 days (day 1, 2, 3, 6, 12, 18, 24, 32). Increasing concentrations of agar were required to solidify the P and N+P treatments.Nutrient release rates from NDS were independent of agar concentrations (with the exception of [PO4] in the medium velocity flume). Nutrient concentrations in the agar of spiked samples declined substantially within a week when exposed to flowing water. Nitrates were retained in agar to a greater extent than phosphates particularly when NDS were exposed to low or medium flows. Although floods physically remove or abrade periphyton in natural streams, findings from this laboratory study suggest that ambient flows deplete the availability of nutrient concentrations to potential periphyton colonizers within the first week of incubation. Because of the rapid decline of nutrients from NDS, short incubation periods in natural running waters seem warranted.  相似文献   

2.
Yoshida  T. 《Hydrobiologia》1982,91(1):571-578
The nutrient concentrations of lake water are strongly influenced by both the combination of inflowing nutrients and those released from sediment in the lake. The former may be related to the nutrient concentration of the lake in winter, and the latter to the peak concentration in summer. This paper considers the problem of how the summer peak may be generated, using actual data from two lakes in Japan. By using a mathematical simulation it can be shown that the summer peak may be generated largely from nutrient materials released from sediment. Using this approach, release rates have been calculated for two lakes. The approach makes a prediction of water improvement due to sediment removal.  相似文献   

3.
Effects of water immersion on arginine vasopressin release in humans   总被引:1,自引:0,他引:1  
Since suppression of arginine vasopressin (AVP) appears to be a determinant of the diuresis of water immersion (WI) in humans, a further understanding of its responsiveness has important implications for normal physiology, pathophysiology, and space physiology. In recent years, discrepant measurements of AVP in plasma during WI have led to conflicting conclusions. In studies in which the subjects ingested water before or during WI, plasma AVP was reported to be unchanged or even increased. In contrast, plasma AVP was suppressed in studies in which the subjects remained hydropenic. A critical review discloses that water intake before and/or during the experiments introduces several new stimuli for AVP release. Furthermore the lower base-line levels of AVP in hydrated subjects complicate detection of small changes in plasma AVP. Although the mechanisms of AVP suppression during WI are incompletely defined, it appears that not only cardiopulmonary mechanoreceptors but also arterial baroreceptors mediate the response. Additional studies are proposed to delineate further the mechanisms governing AVP release during WI.  相似文献   

4.
The decomposition rate of plant litter is important for the carbon cycle. Element stoichiometry and hardly degradable carbon compounds are main factors controlling the decomposition rate of plant litter. Recent research has linked these factors to silicon availability during plant growth, but no research focused on the effect of silicon on litter decomposition. We therefore conducted a batch experiment to assess the effect of silicon availability to plants on litter degradation, nutrient release and multi elemental stoichiometry. Experiments were conducted in the presence or absence of invertebrate shredders (Gammarus pulex). We show that nutrient content (affected by silicon availability during plant growth) has a strong impact on nutrient turnover, while DOC, N, and Mn were mainly controlled by invertebrate feeding. The carbon turnover during microbial litter decay was strongly influenced by the silicon availability during plant growth, with quicker potential C turnover of litter with higher silicon content. In both Si-rich and Si-poor litter, feeding by invertebrate shredders positively impacted turnover rates, but effects were less pronounced in Si-rich litter. It can be concluded that silicon availability in wetlands dominated by reed plays an important role in carbon sequestration, nutrient cycling, and remobilization during aquatic litter decay.  相似文献   

5.
Previous results indicate that arterial pulse pressure modulates release of arginine vasopressin (AVP) in humans. The hypothesis was therefore tested that an increase in arterial pulse pressure is the stimulus for suppression of AVP release during central blood volume expansion by water immersion. A two-step immersion model (n = 8) to the xiphoid process and neck, respectively, was used to attain two different levels of augmented cardiac distension. Left atrial diameter (echocardiography) increased from 28 +/- 1 to 34 +/- 1 mm (P < 0.05) during immersion to the xiphoid process and more so (P < 0.05), to 36 +/- 1 mm, during immersion to the neck. During immersion to the xiphoid process, arterial pulse pressure (invasively measured in a brachial artery) increased (P < 0.05) from 44 +/- 1 to 51 +/- 2 mmHg and to the same extent from 42 +/- 1 to 52 +/- 2 mmHg during immersion to the neck. Mean arterial pressure was unchanged during immersion to the xiphoid process and increased during immersion to the neck by 7 +/- 1 mmHg (P < 0.05). Arterial plasma AVP decreased from 2.5 +/- 0.7 to 1.8 +/- 0.5 pg/ml (P < 0. 05) during immersion to the xiphoid process and significantly more so (P < 0.05), to 1.4 +/- 0.5 pg/ml, during immersion to the neck. In conclusion, other factors besides the increase in arterial pulse pressure must have participated in the graded suppression of AVP release, comparing immersion to the xiphoid process with immersion to the neck. We suggest that when arterial pulse pressure is increased, graded distension of cardiopulmonary receptors modulate AVP release.  相似文献   

6.
Power spectrum analysis of heart-rate variability was made in seven men [mean age 22 (SEM 1) years] in head-out water immersion (W) and in air (A, control) at rest and during steady-state cycling to maximal intensity (maximum oxygen uptake, O2max). At rest W resulted in a trebled increase in the total power (P < 0.05), coupled with minimal changes in the power (as a percentage of the total) of the high frequency peak (HF, centred at 0.26 Hz; 18% vs 28%) and of the low frequency peak (LF, 0.1 Hz; 24% vs 32%). A third peak at about 0.03 Hz (very low frequency, VLF) represented the remaining power both in W and A. These changes as a whole indicated that immersion caused a vagal dominance in cardiac autonomic interaction, due to the central pooling of blood and/or the pressure of water on the trunk. Exercise caused a decrease in the total power in W and A. The LF% did not change up to about 50% O2max, thereafter decreasing towards nil in both conditions. The HF% decreased in similar ways in W and A to about half at 55%–60% O2max and then increased to reach 1.5 times the resting values at O2max. The central frequency of HF increased linearly with oxygen uptake, showing a tendency to be higher in W than in A at medium to high intensities. The VLF% remained unchanged. The lack of differences in the LF peak between W and A during exercise would suggest that blood distribution had no effect on the readjustments in control mechanisms of arterial pressure. On the other hand, the findings of similar HF powers and the very similar values for ventilation in W and A confirmed the direct effect of the respiratory activity in heart rate modulation during exercise. Accepted: 25 August 1997  相似文献   

7.
The role of litter composition and quality on the nutrient release was studied in three month laboratory experiment. Spruce needles and leaves of four species dominant in understorey vegetation of the Norway spruce forest were collected in early autumn and incubated at 5°C, 10°C and 15°C. C mineralization was measured every two weeks, concentration of NH4, NO3, dissolved organic N, dissolved organic C and oxalate extractable P at the beginning and end of incubation and decay rate and nutrient release was calculated. Freshly senescent leaves contained less N and P indicating nutrient reallocation. Effect of temperature on a decay rate and nutrient transformation was not significant while the effect of litter quality expressed by C/N ratio at the end of incubation was. The decay rate was the fastest for the fern (Athyrium alpestre) and decreased in order: Callamagrostis villosa > Vaccinium myrtillus > Avenella flexuosa > spruce needles. The critical C/N ratio bellow which mineral N was released in high amount was around a value of 32. The results indicte that an increase of coverage of understorey vegetation can increase a risk of nutrient release.  相似文献   

8.
1. Annual and diel variations in methane (CH4) release in stands of Equisetum fluviatile were measured from June to November in Lake Pääjärvi, southern Finland, where E. fluviatile is the dominant emergent macrophyte. An estimate of total annual release of CH4 from stands of E. fluviatile in this lake was also made. Diel variation was measured twice (June and August), whereas measurements for annual variation were performed monthly. The hypothesis that a relationship exists between the productivity of stands and CH4 release was also tested, whereupon net ecosystem exchange (NEE) of CO2 as well as standing stock of E. fluviatile were determined, in addition to simultaneous recordings of air temperature and solar radiation. 2. Seasonal variations in CH4 release were pronounced, with the highest release rate of 813 mg m–2 day–1 measured in July and the lowest 6.5 mg m–2 day–1 in November, when the shoreline was already frozen. 3. Methane release rates were strongly correlated with mean air temperature in the measuring chambers and with total solar radiation. There was no significant correlation between the instantaneous radiation and CH4 release rates. 4. The seasonal patterns of CH4 release and NEE of CO2 resembled each other, except in July when NEE suddenly dropped. The decrease in NEE coincided with the highest CH4 release rate measured and the highest temperature during the measuring period, i.e. 32 °C outside and 37 °C inside the chamber. Excluding this date, daily CH4 release was strongly correlated with NEE (r2 = 0.971). 5. No diel changes in CH4 release rates were detected. In June and August the maximum release rates were 11.4 and 16.8 mg CH4 m–2 h–1, respectively. 6. The standing stock of E. fluviatile at different times of the growing season was not correlated with CH4 efflux; the CH4 release rates could be related neither to the number of shoots, i.e. sufficient conduits for gas transport were always present, nor to the shoot biomass in the measuring chambers. 7. For an estimate of the annual release, the monthly values measured at noon were integrated over the entire growing season; this resulted in 43.7 g CH4 m–2 for the annual emission. The total annual emission of CH4 from the area covered with E. fluviatile in Lake Pääjärvi was calculated to be ≈ 5000 kg. 8. Significant amounts of CH4 are released from stands of E. fluviatile in boreal lakes. The CH4 release rate follows a seasonal pattern but there is no diel pattern. Methane release rate can be related to temperature, solar radiation and NEE of CO2, but not to the standing stock of E. fluviatile or the number of shoots.  相似文献   

9.
We examined the effects of nutrient amendments on epilimnetic freshwater bacteria during three distinct periods in the eutrophic Lake Mendota's seasonal cycle (spring overturn, summer stratification and autumn overturn). Microcosm treatments enriched solely with phosphorus containing compounds did not result in a large bacterial community composition (BCC) change or community activity response (assessed via alkaline phosphatase activity, APA) relative to the controls during any season. Treatments enriched with carbon‐ and nitrogen‐containing compounds resulted in a dramatic BCC change and a large APA increase in the autumn and spring seasons, but only treatments receiving carbon, nitrogen and phosphorus (CNP) exhibited similar responses in the summer season. Despite the fact that the amendments created similar CNP concentration conditions across seasons, the BCC following amendment greatly varied among seasons. 16S rRNA gene sequence analysis indicated that many common freshwater bacterial lineages from the Alpha‐ and Betaproteobacteria class and Bacteroidetes phylum were favoured following nutrient (CNP) addition, but individual taxa were generally not favoured across all seasons. Targeted quantitative PCR analysis revealed that the abundance of the Actinobacteria acIB1 cluster decreased in all microcosms during all three seasons, while the Flavobacterium aquatile (spring) and ME‐B0 (summer) clusters of Bacteroidetes increased following CNP addition. These results suggest a particular bacterial group is not universally favoured by increased nutrient loads to a lake; therefore, efforts to predict which bacteria are involved in nutrient cycling during these periods must take into account the seasonality of freshwater bacterial communities.  相似文献   

10.
We study coupled socioeconomical and ecological dynamics for lake water pollution. Players choose between cooperative (but costly) option and economical option, and their decision is affected by the fraction of cooperators in the community and by the importance of water pollution problem. When an opportunity for choice arrives, players take the option with the higher utility (best response dynamics). This social dynamics is coupled with the dynamics of lake water pollution. First, oscillation of large amplitude is generated if social change occurs faster than ecosystem responses. Second, the model can show “paradox of nutrient removal”. If phosphorus is removed more effectively either from the inflow or from the lake water, the pollution level may increase (rather than decrease) due to the decline in people's willingness to cooperate. Third, we compare the effectiveness of alternative methods in improving water quality: to reduce the cooperation cost by subsidy, to enhance people's concern to water pollution problem, and to promote the conformity among people.  相似文献   

11.
Dung beetles are extensively used as a focal taxon in tropical forests. Yet, information for most of their ecological functions comes from other systems. We present results from a field experiment in a tropical rain forest showing that dung beetle activity increases foliar phosphorus concentration in seedlings of the tree Brosimum lactescens. Our results open new lines of research to assess the multiple effects that dung beetles may have on rain forest plants.  相似文献   

12.
Decomposition of fine roots is a fundamental ecosystem process that relates to carbon (C) and nutrient cycling in terrestrial ecosystems. However, this important ecosystem process has been hardly studied in Patagonian ecosystems. The aim of this work was to study root decomposition and nutrient release from fine roots of grasses and trees (Nothofagus antarctica) across a range of Patagonian ecosystems that included steppe, primary forest and silvopastoral forests. After 2.2 years of decomposition in the field all roots retained 70–90% of their original mass, and decomposition rates were 0.09 and 0.15 year?1 for grass roots in steppe and primary forest, respectively. For N. antarctica roots, no significant differences were found in rates of decay between primary and silvopastoral forests (k = 0.07 year?1). Possibly low temperatures of these southern sites restricted decomposition by microorganisms. Nutrient release differed between sites and root types. Across all ecosystem categories, nitrogen (N) retention in decomposing biomass followed the order: tree roots > roots of forest grasses > roots of steppe grasses. Phosphorus (P) was retained in grass roots in forest plots but was released during decomposition of tree and steppe grass roots. Calcium (Ca) dynamics also was different between root types, since trees showed retention during the initial phase, whereas grass roots showed a slow and consistent Ca release during decomposition. Potassium (K) was the only nutrient that was rapidly released from both grass and tree roots in both grasslands and woodlands. We found that silvopastoral use of N. antarctica forests does not affect grass or tree root decomposition and/or nutrient release, since no significant differences were found for any nutrient according to ecosystem type. Information about tree and grass root decomposition found in this work could be useful to understand C and nutrient cycling in these southern ecosystems, which are characterized by extreme climatic conditions.  相似文献   

13.
An Arizona watershed converted from chaparral to grass, released high concentrations of nitrate to stream water. The nitrate originated from the rooting zone of the decomposing shrubs. High nitrate concentrations (44–373 ppm) were found in soil solutions from 1.5-, 3.0-, and 4.6-m depths on the converted watershed as compared with low nitrate concentrations (0.2–6.2 ppm) found in an adjacent undisturbed area. Soil solution nitrate concentrations at the 0.3-m depth were generally low, especially in the untreated area. High nitrate concentrations were balanced mainly by relative decreases in bicarbonate anions in the soil solutions and in the stream water. Multiple stepwise regression analyses showed improvement in the regression of bicarbonate on nitrate when chloride and sulfate anions were entered as variables.  相似文献   

14.
We studied the root foraging ability and its consequences for the nutrient acquisition of five grass species that differ in relative growth rate and that occur in habitats that differ widely in nutrient availability. Foraging responses were quantified, based on the performance of the plants in homogeneous and heterogeneous soil environments of the same overall nutrient availability. Although all species tended to produce a significantly higher root length density in a nutrient-rich patch, this response was significant only for the faster-growing species. The increased root length density resulted from small, though not significant, changes in root biomass and specific root length. The effectiveness of root proliferation was determined by quantifying the total amount of nutrients (N and P) accumulated by the plants over the course of the experiment. Plants acquired more N in a heterogeneous environment than in a homogeneous environment, although the total nutrient availability was the same. The ability to acquire nutrients (N or P) in the heterogeneous environment was not related to the ability of species to increase root length density in response to local nutrient enrichment. In contrast to other studies, our results suggest that the role of morphological plasticity of roots in acquiring patchily distributed resources is limited. Possible reasons for this discrepancy are discussed. Received: 11 September 1997 / Accepted: 28 February 1998  相似文献   

15.
The fish food and faeces were fractioned into the differentcomponents of phosphorus and nitrogen. There was a rapid release ofphosphorus from the fish food and faeces and a decrease thereafterwhereas ammonium release was slow at first with the rate increasingwith time. Both temperature and pH affected the release of nutrientsfrom fish food and faeces. The release of phosphorus and nitrogen washigher at higher temperatures. The maximum release of phosphorus wasat pH 4.0 whereas nitrogen release was maximum at neutral (7.0) toalkaline (10.0) media.  相似文献   

16.
The natural reservoir of Francisella tularensis , the causative agent of tularaemia, is yet to be identified. We investigated the possibility that Francisella persists in natural aquatic ecosystems between outbreaks. It was hypothesized that nutrient-rich environments, with strong protozoan predation, favour the occurrence of the tularaemia bacterium. To investigate the differences in adaptation to aquatic environments of the species and subspecies of Francisella , we screened 23 strains for their ability to survive grazing by the ciliate Tetrahymena pyriformis . All the Francisella strains tested were consumed at a low rate, although significant differences between subspecies were found. The survival and virulence of gfp -labelled F. tularensis ssp. holarctica were then studied in a microcosm experiment using natural lake water, with varying food web complexities and nutrient availabilities. High nutrient conditions in combination with high abundances of nanoflagellates were found to favour F. tularensis ssp. holarctica . The bacterium was observed both free-living and within the cells of a nanoflagellate. Francisella tularensis entered a viable but nonculturable state during the microcosm experiment. When studied over a longer period of time, F. tularensis ssp. holarctica survived in the lake water, but loss of virulence was not prevented by either high nutrient availability or the presence of predators.  相似文献   

17.

Background and aims

Precipitation and nitrogen (N) deposition are predicted to increase in northern China. The present paper aimed to better understand how different dominant species in semi-arid grasslands in this region vary in their litter decomposition and nutrient release responses to increases in precipitation and N deposition.

Methods

Above-ground litter of three dominant species (two grasses, Agropyron cristatum and Stipa krylovii, and one forb, Artemisia frigida) was collected from areas without experimental treatments in a semi-arid grassland in Inner Mongolia. Litter decomposition was studied over three years to determine the effects of water and N addition on litter decomposition rate and nutrient dynamics.

Results

Litter mass loss and nutrient release were faster for the forb species than for the two grasses during decomposition. Both water and N addition increased litter mass loss of the grass A. cristatum, while the treatments showed no impacts on that of the forb A. frigida. Supplemental N had time-dependent, positive effects on litter mass loss of the grass S. krylovii. During the three-year decomposition study, the release of N from litter was inhibited by N addition for the three species, and it was promoted by water addition for the two grasses. Across all treatments, N and potassium (K) were released from the litter of all three species, whereas calcium (Ca) was accumulated. Phosphorus (P) and magnesium (Mg) were released from the forb litter but accumulated in the grass litter after three years of decomposition.

Conclusions

Our findings revealed that the litter decomposition response to water and N supplementation differed among dominant plant species in a semi-arid grassland, indicating that changes in dominant plant species induced by projected increases in precipitation and N deposition are likely to affect litter decomposition, nutrient cycling, and further biogeochemical cycles in this grassland. The asynchronous nutrient release of different species’ litter found in the present study highlights the complexity of nutrient replenishment from litter decomposition in the temperate steppe under scenarios of enhancing precipitation and N deposition.
  相似文献   

18.
19.
Soil respiration rates vary significantly among major plant biomes, suggesting that vegetation type influences the rate of soil respiration. However, correlations among climatic factors, vegetation distributions, and soil respiration rates make cause-effect arguments difficult. Vegetation may affect soil respiration by influencing soil microclimate and structure, the quantity of detritus supplied to the soil, the quality of that detritus, and the overall rate of root respiration. At the global scale, soil respiration rates correlate positively with litterfall rates in forests, as previously reported, and with aboveground net primary productivity in grasslands, providing evidence of the importance of detritus supply. To determine the direction and magnitude of the effect of vegetation type on soil respiration, we collated data from published studies where soil respiration rates were measured simultaneously in two or more plant communities. We found no predictable differences in soil respiration between cropped and vegetation-free soils, between forested and cropped soils, or between grassland and cropped soils, possibly due to the diversity of crops and cropping systems included. Factors such as temperature, moisture availability, and substrate properties that simultaneously influence the production and consumption of organic matter are more important in controlling the overall rate of soil respiration than is vegetation type in most cases. However, coniferous forests had 10% lower rates of soil respiration than did adjacent broad-leaved forests growing on the same soil type, and grasslands had, on average, 20% higher soil respiration rates than did comparable forest stands, demonstrating that vegetation type does in some cases significantly affect rates of soil respiration.  相似文献   

20.
Herbivory is one of the key drivers shaping plant community dynamics. Herbivores can strongly influence plant productivity directly through defoliation and the return of nutrients in the form of dung and urine, but also indirectly by reducing the abundance of neighbouring plants and inducing changes in soil processes. However, the relative importance of these processes is poorly understood. We, therefore, established a common garden experiment to study plant responses to defoliation, dung addition, moss cover, and the soil legacy of reindeer grazing. We used an arctic tundra grazed by reindeer as our study system, and Festuca ovina, a common grazing‐tolerant grass species as the model species. The soil legacy of reindeer grazing had the strongest effect on plants, and resulted in higher growth in soils originating from previously heavily‐grazed sites. Defoliation also had a strong effect and reduced shoot and root growth and nutrient uptake. Plants did not fully compensate for the tissue lost due to defoliation, even when nutrient availability was high. In contrast, defoliation enhanced plant nitrogen concentrations. Dung addition increased plant production, nitrogen concentrations and nutrient uptake, although the effect was fairly small. Mosses also had a positive effect on aboveground plant production as long as the plants were not defoliated. The presence of a thick moss layer reduced plant growth following defoliation. This study demonstrates that grasses, even though they suffer from defoliation, can tolerate high densities of herbivores when all aspects of herbivores on ecosystems are taken into account. Our results further show that the positive effect of herbivores on plant growth via changes in soil properties is essential for plants to cope with a high grazing pressure. The strong effect of the soil legacy of reindeer grazing reveals that herbivores can have long‐lasting effects on plant productivity and ecosystem functioning after grazing has ceased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号