首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammatory effects in the rat lung have been investigated, non-invasively by MRI, at early time points (3 and 6 h) after ovalbumin (OA) or endotoxin (LPS) challenges. Six hours after challenge with OA, a strong, even inflammatory signal was present around the periphery of the lung in a region corresponding to the pleura. Histological analysis confirmed the presence of marked edema associated with the pleural cavity of OA-treated animals. Lower levels of pleural edema were observed in MRI and histological evaluation of LPS-treated animals and no abnormality was observed in actively sensitized and na?ve, saline-treated groups. Diffuse edematous signals were detected in the lung 3 and 6 h after challenge with OA or LPS; the signal volumes were larger at both time points following OA instillation. Bronchoalveolar lavage (BAL) fluid analysis performed 6 h after challenge revealed increased levels of protein and greater cellular activation in OA- than in LPS-treated animals. Furthermore, increased levels of peribronchial edema were found by histology 6 h after OA. BAL fluid and histological assessments demonstrated that the inflammatory signals were due to edema and not mucus as no significant changes in BAL mucin concentrations or differences in goblet cells were identified between OA or LPS challenge and their respective vehicle groups. Our data show that MRI is able to detect, non-invasively, inflammatory signals in both the lung and the pleura in spontaneously breathing animals, highlighting its potential to study the consequences of pulmonary insults on both sites.  相似文献   

2.
In vitro and in vivo studies, in both animal models and human asthmatics, have implicated IL-4 as an important inflammatory mediator in asthma. In a murine asthma model, we examined the anti-inflammatory activities of soluble IL-4R (sIL-4R). In this model, mice sensitized to OVA by i.p. and intranasal (i.n.) routes are challenged with the allergen by i.n. administration. The OVA challenge elicits an eosinophil infiltration into the lungs, with widespread mucus occlusion of the airways, and results in bronchial hyperreactivity. sIL-4R (0.1-100 microgram) was administered by either i.n. or i.p. routes before OVA challenge in OVA-sensitized mice. Both blood and bronchoalveolar lavage fluid levels of sIL-4R were significantly elevated compared with controls by i.n. delivery of 100 microgram sIL-4R; i.p. delivery of 100 microgram sIL-4R only raised blood levels of sIL-4R. The i.n. administration of 100 microgram sIL-4R before allergen challenge significantly reduced late phase pulmonary inflammation, blocking airway eosinophil infiltration, VCAM-1 expression, and mucus hypersecretion. In contrast, i.p. delivery of 100 microgram sIL-4R inhibited only the influx of eosinophils into the lungs, but not airway mucus release. Furthermore, sIL-4R treatment by either i.n. or i.p. routes did not reduce airway hyperreactivity in response to methacholine challenge. Thus, elevating airway levels of sIL-4R through the administration of exogenous sIL-4R is effective in blocking the late phase pulmonary inflammation that occurs in this murine allergen-challenge asthma model. These results suggest that sIL-4R may have beneficial anti-inflammatory effects in asthmatic patients.  相似文献   

3.
Magnetic resonance imaging (MRI) has been used previously to follow noninvasively inflammatory processes in rat acute models of lung inflammation. Here the technique was applied to a model involving repeated intratracheal administration of ovalbumin (OA). Anatomical MRI was performed at different time points with respect to a single or multiple OA challenges in Brown Norway rats actively sensitized to the allergen. Vascular permeability was assessed using dynamic contrast-enhanced MRI (DCE-MRI). Bronchoalveolar lavage (BAL) fluid analysis and histology were performed to validate the MRI data. The time course of MRI signals after a single OA challenge reached a maximum at 48 h and decreased significantly at 96 h. After the second and subsequent challenges, the maximum signal occurred at 6 h with a time-dependent decline over the remainder of the time course. A reduction of the inflammatory response following repeated administration of OA was also detected by BAL fluid analysis. The decrease in vascular permeability assessed by DCE-MRI in repeatedly OA-challenged rats was consistent with the thickening of the vascular wall for vessels of diameter up to 300 microm revealed by histology. Angiogenesis of vessels smaller than 30 microm was also detected histologically. These results suggest that MRI can be used to detect the inflammatory response and vascular remodeling associated with chronic airway inflammation in rat models involving repeated administration of allergen. As the contrast agent used in the DCE-MRI experiments is approved for clinical use, there is potential to translate the approach to patients.  相似文献   

4.
Using magnetic resonance imaging (MRI), we detected a signal in the lungs of Brown Norway rats after intratracheal administration of endotoxin [lipopolysaccharide (LPS)]. The signal had two components: one, of diffuse appearance and higher intensity, was particularly prominent up to 48 h after LPS; the second, showing an irregular appearance and weaker intensity, was predominant later. Bronchoalveolar lavage fluid analysis indicated that generalized granulocytic (especially neutrophilic) inflammation was a major contributor to the signal at the early time points, with mucus being a major factor contributing at the later time points. The facts that animals can breathe freely during data acquisition and that neither respiration nor cardiac triggering is applied render this MRI approach attractive for the routine testing of anti-inflammatory drugs. In particular, the prospect of noninvasively detecting a sustained mucus hypersecretory phenotype in the lung brings an important new perspective to models of chronic obstructive pulmonary diseases in animals.  相似文献   

5.
Asthma represents a serious health problem particularly for inner city children, and recent studies have identified that cockroach allergens trigger many of these asthmatic attacks. This study tested the concept that asthma-like pulmonary inflammation may be induced by house dust containing cockroach allergens. An aqueous extract was prepared from a house dust sample containing endotoxin and high levels of cockroach allergens. BALB/c mice were immunized with the house dust extract (HDE) and received two additional pulmonary challenges. Bronchoalveolar lavage (BAL) eosinophil counts and eotaxin levels were significantly increased in immunized mice exposed to the HDE, whereas neutrophils were the predominant BAL inflammatory cell in the unimmunized mice. Kinetics studies in immunized mice demonstrated a peak pulmonary inflammatory response 48 h after the last challenge. The allergic response in this model was further confirmed by histological and physiological studies demonstrating a significant influx of eosinophils and lymphocytes in the peribronchial area, and severe airway hyperreactivity through whole-body plethysmography. The specificity of the response was established by immunizing with HDE and challenging with purified cockroach allergen, which induced pulmonary eosinophilia and airway hyperreactivity. Ab inhibition of eotaxin significantly inhibited the number of BAL eosinophils. These data describe a novel murine model of asthma-like pulmonary inflammation induced by house dust containing endotoxin and cockroach allergens and further demonstrate that eotaxin represents the principal chemoattractant for the recruitment of the pulmonary eosinophils.  相似文献   

6.
Background: Club cell protein (CC16) is a pneumoprotein secreted by epithelial club cells. CC16 possesses anti-inflammatory properties and is a potential biomarker for airway epithelial damage. We studied the effect of inhaled allergen on pulmonary and systemic CC16 levels.

Methods: Thirty-four subjects with allergic asthma underwent an inhaled allergen challenge. Bronchoscopy with bronchoalveolar lavage (BAL) and brushings was performed before and 24?h after the challenge. CC16 was quantified in BAL and CC16 positive cells and CC16 mRNA in bronchial brushings. CC16 was measured in plasma and urine before and repeatedly after the challenge. Thirty subjects performed a mannitol inhalation challenge prior to the allergen challenge.

Results: Compared to baseline, CC16 in plasma was significantly increased in all subjects 0–1?h after the allergen challenge, while CC16 in BAL was only increased in subjects without a late allergic response. Levels of CC16 in plasma and in the alveolar fraction of BAL correlated significantly after the challenge. There was no increase in urinary levels of CC16 post-challenge. Mannitol responsiveness was greater in subjects with lower baseline levels of CC16 in plasma.

Conclusions: The increase in plasma CC16 following inhaled allergen supports the notion of CC16 as a biomarker of epithelial dysfunction.  相似文献   

7.
Numerous in vitro and in vivo studies in both animal models and human asthmatics have implicated platelet-activating factor (PAF) as an important inflammatory mediator in asthma. In a murine asthma model, we examined the anti-inflammatory activities of recombinant human PAF-acetylhydrolase (rPAF-AH), which converts PAF to biologically inactive lyso-PAF. In this model, mice sensitized to OVA by i.p. and intranasal (i.n.) routes are challenged with the allergen by i.n. administration. The OVA challenge elicits an eosinophil infiltration into the lungs with widespread mucus occlusion of the airways and results in bronchial hyperreactivity. The administration of rPAF-AH had a marked effect on late-phase pulmonary inflammation, which included a significant reduction in airway eosinophil infiltration, mucus hypersecretion, and airway hyperreactivity in response to methacholine challenge. These studies demonstrate that elevating plasma levels of PAF-AH through the administration of rPAF-AH is effective in blocking the late-phase pulmonary inflammation that occurs in this murine allergen-challenge asthma model. These results suggest that rPAF-AH may have therapeutic effects in patients with allergic airway inflammation.  相似文献   

8.
Interleukin 5 (IL-5), a cytokine with a range of activities on eosinophils, has been implicated in the allergic asthmatic reaction. We have investigated the kinetics of release of this cytokine into asthmatic airways as well as its relationship to eosinophil recruitment following allergen challenge. Twelve asthmatic patients underwent endobronchial allergen challenge and bronchoalveolar lavage (BAL) fluid was obtained either 4 h (n=6) or 24 h (n=6) after challenge. Four hours after challenge, levels of IL-5 were significantly increased in BAL fluid (10-fold concentration obtained from the allergen-challenge site compared with the saline control (median 2.67 pg/ml, range 1.0-7.4 pg/ml vs 1.0 pg/ml <1.0-2.4 pg/ml, P<0.05). At 24 h levels of IL-5 increased further at the allergen site but not at the saline control lavage (31.1 pg/ml, range 3.6-59. 0 pg/ml vs 1.5 pg/ml, range <1.5-4.9 pg/ml, respectively P<0.02). At 4h there was almost a three fold increase in IL-5 level, whereas at 24 h IL-5 levels were 20-fold greater. Differential cell counts showed that eosinophil numbers obtained 4 and 24 h after allergen challenge were 7 and 32 times higher than numbers after saline challenge. The parallel increase of eosinophil numbers and IL-5 concentrations in BAL fluid suggests that this cytokine may contribute to the eosinophil recruitment observed into asthmatic airways after allergen challenge.  相似文献   

9.
Chronic airway inflammation is a key feature of bronchial asthma. Leukotrienes are potent inflammatory mediators that play a role in the pathophysiology of asthma, and their levels are elevated in the airways in response to allergen challenge. We examined the anti-inflammatory effect of thymoquinone (TQ), the active principle in the volatile oil of Nigella sativa seeds, on leukotriene (LT) biosynthesis in a mouse model of allergic asthma. Mice sensitized and challenged with ovalbumin (OVA) antigen had an increased amounts of leukotriene B4 and C4, Th2 cytokines, and eosinophils in bronchoalveolar lavage (BAL) fluid. In addition, there was also a marked increase in lung tissue eosinophilia and goblet cell numbers. Administration of TQ before OVA challenge inhibited 5-lipoxygenase, the main enzyme in leukotriene biosynthesis, expression by lung cells and significantly reduced the levels of LTB4 and LTC4. This was accompanied by a marked decrease in Th2 cytokines and BAL fluid and lung tissue eosinophilia, all of which are characteristics of airway inflammation. These results demonstrate the anti-inflammatory effect of TQ in experimental asthma.  相似文献   

10.
Asthma and obesity are growing epidemics in the world. It is well established that obesity worsens the asthma outcomes. High-fat diet-induced obesity in mice exacerbates the pulmonary eosinophilic inflammation. We have used wild-type (WT) and ob/ob mice to further explore the mechanisms by which obesity aggravates the pulmonary eosinophilic inflammation. The eosinophil (EO) number in bronchoalveolar lavage (BAL) fluid, lung tissue, blood, and bone marrow were evaluated at 24, 48, and 72 h after ovalbumin (OVA) challenge in sensitized mice. The basal EO number (phosphate-buffered saline (PBS)-instilled mice) in lung tissue was about 3.5-fold greater in ob/ob compared with WT mice. OVA challenge in ob/ob mice promoted an EO accumulation into the lung that was accompanied by a lower emigration to airways lumen (BAL fluid) in comparison with WT mice. OVA challenge also markedly elevated the number of mature and immature EO in bone marrow of ob/ob mice at 24 h compared with WT group. Blood EO at 48 h was markedly greater in ob/ob mice. Tumor necrosis factor (TNF)-α and interleukin (IL)-10 levels in BAL fluid were significantly higher in ob/ob mice, whereas no changes for IL-5 and eotaxin were found. The IL-6 levels were significantly lower in ob/ob mice. In conclusion, OVA challenge in ob/ob obese mice potentiates eosinophilopoiesis and promotes an accumulation of EO into the lung tissue, delaying their transit to airways lumen. The longer EO remain into the lung tissue is likely to contribute, at least in part, to the asthma worsened by obesity.  相似文献   

11.
Nitric oxide (NO) levels are increased in the exhaled air of asthmatics. As NO levels correlate with allergic airway inflammation, NO measurement has been suggested for disease monitoring. In patients with asthma, we previously demonstrated that intrabronchial treatment with a natural porcine surfactant enhanced airway inflammation after segmental allergen provocation. We studied whether local levels of NO reflect the degree of allergic airway inflammation following segmental allergen challenge with or without surfactant pretreatment. Segmental NO, as well as nitrite and nitrate in bronchoalveolar lavage (BAL) fluid, was measured before and after segmental challenge with either saline, saline plus allergen, or surfactant plus allergen in 16 patients with asthma and five healthy subjects. The data were compared with inflammatory BAL cells. Segmental NO levels were increased after instillation of saline (p < 0.05), or surfactant plus allergen in asthmatics (p < 0.05), and values were higher after surfactant plus allergen compared to saline challenge. Nitrate BAL levels were not altered after saline challenge but increased after allergen challenge (p < 0.05) and further raised by surfactant (p < 0.05), whereas nitrite levels were not altered by any treatment. Segmental NO and nitrate levels correlated with the degree of eosinophilic airway inflammation, and nitrate levels also correlated with neutrophil and lymphocyte numbers in BAL. In healthy subjects, NO, nitrite, and nitrate were unaffected. Thus, segmental NO and nitrate levels reflect the degree of allergic airway inflammation in patients with asthma. Measurement of both markers can be useful in studies using segmental allergen provocation, to assess local effects of potential immunomodulators.  相似文献   

12.

Background

Antigen desensitization through oral tolerance is becoming an increasingly attractive treatment option for allergic diseases. However, the mechanism(s) by which tolerization is achieved remain poorly defined. In this study we endeavored to induce oral tolerance to cockroach allergen (CRA: a complex mixture of insect components) in order to ameliorate asthma-like, allergic pulmonary inflammation.

Methods

We compared the pulmonary inflammation of mice which had received four CRA feedings prior to intratracheal allergen sensitization and challenge to mice fed PBS on the same time course. Respiratory parameters were assessed by whole body unrestrained plethysmography and mechanical ventilation with forced oscillation. Bronchoalveolar lavage fluid (BAL) and lung homogenate (LH) were assessed for cytokines and chemokines by ELISA. BAL inflammatory cells were also collected and examined by light microscopy.

Results

CRA feeding prior to allergen sensitization and challenge led to a significant improvement in respiratory health. Airways hyperreactivity measured indirectly via enhanced pause (Penh) was meaningfully reduced in the CRA-fed mice compared to the PBS fed mice (2.3 ± 0.4 vs 3.9 ± 0.6; p = 0.03). Directly measured airways resistance confirmed this trend when comparing the CRA-fed to the PBS-fed animals (2.97 ± 0.98 vs 4.95 ± 1.41). This effect was not due to reduced traditional inflammatory cell chemotactic factors, Th2 or other cytokines and chemokines. The mechanism of improved respiratory health in the tolerized mice was due to significantly reduced eosinophil numbers in the bronchoalveolar lavage fluid (43300 ± 11445 vs 158786 ± 38908; p = 0.007) and eosinophil specific peroxidase activity in the lung homogenate (0.59 ± 0.13 vs 1.19 ± 0.19; p = 0.017). The decreased eosinophilia was likely the result of increased IL-10 in the lung homogenate of the tolerized mice (6320 ± 354 ng/mL vs 5190 ± 404 ng/mL, p = 0.02).

Conclusion

Our results show that oral tolerization to CRA can improve the respiratory health of experimental mice in a CRA-induced model of asthma-like pulmonary inflammation by reducing pulmonary eosinophilia.  相似文献   

13.
Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1β) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50)). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.  相似文献   

14.
Asthma is a chronic lung disease exhibiting airway obstruction, hyperresponsiveness, and inflammation, characterized by the infiltration of eosinophils into the airways and the underlying tissue. Prolonged eosinophilic inflammation depends on the balance between the cell's inherent tendency to undergo apoptosis and the local eosinophil-viability enhancing activity. TRAIL, a member of the TNF family, induces apoptosis in most transformed cells; however, its role in health and disease remains unknown. To test the hypothesis that Ag-induced inflammation is associated with TRAIL/TRAIL-R interactions, we used a segmental Ag challenge (SAC) model in ragweed-allergic asthmatics and nonasthmatic patients and analyzed bronchoalveolar lavage (BAL) material for 2 wk. In asthmatic patients, the level of TRAIL in BAL fluid dramatically increased 24 h after SAC, which significantly correlated with BAL eosinophil counts. Immunohistochemical analysis of bronchial biopsies from asthmatic patients demonstrated that TRAIL staining was increased in epithelial, airway smooth muscle, and vascular smooth muscle cells and throughout the interstitial tissue after SAC. This was confirmed by quantitative immunocytochemical image analysis of BAL eosinophils and alveolar macrophages, which demonstrated that expression levels of TRAIL and DcR2 increased, whereas expression levels of the TRAIL-Rs DR4 and DR5 decreased in asthmatic subjects after SAC. We also determined that TRAIL prolongs eosinophil survival ex vivo. These data provide the first in vivo evidence that TRAIL expression is increased in asthmatics following Ag provocation and suggest that modulation of TRAIL and TRAIL-R interactions may play a crucial role in promoting eosinophil survival in asthma.  相似文献   

15.
Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.  相似文献   

16.
AimsGranulocyte Colony-Stimulating Factor (G-CSF), which mobilizes hemopoietic stem cells (HSC), is believed to protect HSC graft recipients from graft-versus-host disease by enhancing Th2 cytokine secretion. Accordingly, G-CSF should aggravate Th2-dependent allergic pulmonary inflammation and the associated eosinophilia. We evaluated the effects of G-CSF in a model of allergic pulmonary inflammation.Main methodsAllergic pulmonary inflammation was induced by repeated aerosol allergen challenge in ovalbumin-sensitized C57BL/6J mice. The effects of allergen challenge and of G-CSF pretreatment were evaluated by monitoring: a) eosinophilia and cytokine/chemokine content of bronchoalveolar lavage fluid, pulmonary interstitium, and blood; b) changes in airway resistance; and c) changes in bone-marrow eosinophil production.Key findingsContrary to expectations, G-CSF pretreatment neither induced nor enhanced allergic pulmonary inflammation. Instead, G-CSF: a) suppressed accumulation of infiltrating eosinophils in bronchoalveolar, peribronchial and perivascular spaces of challenged lungs; and b) prevented ovalbumin challenge-induced rises in airway resistance. G-CSF had multiple regulatory effects on cytokine and chemokine production: in bronchoalveolar lavage fluid, levels of IL-1 and IL-12 (p40), eotaxin and MIP-1a were decreased; in plasma, KC, a neutrophil chemoattractant, was increased, while IL-5 was decreased and eotaxin was unaffected. In bone-marrow, G-CSF: a) prevented the increase in bone-marrow eosinophil production induced by ovalbumin challenge of sensitized mice; and b) selectively stimulated neutrophil colony formation.SignificanceThese observations challenge the view that G-CSF deviates cytokine production towards a Th2 profile in vivo, and suggest that this neutrophil-selective hemopoietin affects eosinophilic inflammation by a combination of effects on lung cytokine production and bone-marrow hemopoiesis.  相似文献   

17.
We postulated that the seleno-organic compound ebselen would attenuate neutrophil recruitment and activation after aerosolized challenge with endotoxin (LPS) through its effect as an antioxidant and inhibitor of gene activation. Rats were given ebselen (1-100 mg/kg i.p.) followed by aerosolized LPS exposure (0.3 mg/ml for 30 min). Airway inflammatory indices were measured 4 h postchallenge. Bronchoalveolar lavage (BAL) fluid cellularity and myeloperoxidase activity were used as a measure of neutrophil recruitment and activation. RT-PCR analysis was performed in lung tissue to assess gene expression of TNF-alpha, cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage-inflammatory protein-2 (MIP-2), ICAM-1, IL-10, and inducible NO synthase. Protein levels in lung and BAL were also determined by ELISA. Ebselen pretreatment inhibited neutrophil influx and activation as assessed by BAL fluid cellularity and myeloperoxidase activity in cell-free BAL and BAL cell homogenates. This protective effect was accompanied by a significant reduction in lung and BAL fluid TNF-alpha and IL-1 beta protein and/or mRNA levels. Ebselen pretreatment also prevented lung ICAM-1 mRNA up-regulation in response to airway challenge with LPS. This was not a global effect of ebselen on LPS-induced gene expression, because the rise in lung and BAL CINC-1 and MIP-2 protein levels were unaffected as were lung mRNA expressions for CINC-1, MIP-2, IL-10, and inducible NO synthase. These data suggest that the anti-inflammatory properties of ebselen are achieved through an inhibition of lung ICAM-1 expression possibly through an inhibition of TNF-alpha and IL-1 beta, which are potent neutrophil recruiting mediators and effective inducers of ICAM-1 expression.  相似文献   

18.
Concomitant infection of murine CMV (MCMV), an opportunistic respiratory pathogen, altered Th1/Th2 cytokine expression, decreased bronchoalveolar lavage (BAL) fluid eosinophilia, and increased mucus production in a murine model of OVA-induced allergic airway disease. Although no change in the total number of leukocytes infiltrating the lung was observed between challenged and MCMV/challenged mice, the cellular profile differed dramatically. After 10 days of OVA-aerosol challenge, eosinophils comprised 64% of the total leukocyte population in BAL fluid from challenged mice compared with 11% in MCMV/challenged mice. Lymphocytes increased from 11% in challenged mice to 30% in MCMV/challenged mice, and this increase corresponded with an increase in the ratio of CD8(+) to CD4(+)TCRalphabeta lymphocytes. The decline in BAL fluid eosinophilia was associated with a change in local Th1/Th2 cytokine profiles. Enhanced levels of IL-4, IL-5, IL-10, and IL-13 were detected in lung tissue from challenged mice by RNase protection assays. In contrast, MCMV/challenged mice transiently expressed elevated levels of IFN-gamma and IL-10 mRNAs, as well as decreased levels of IL-4, IL-5, and IL-13 mRNAs. Elevated levels of IFN-gamma and reduced levels of IL-5 were also demonstrated in BAL fluid from MCMV/challenged mice. Histological evaluation of lung sections revealed extensive mucus plugging and epithelial cell hypertrophy/hyperplasia only in MCMV/challenged mice. Interestingly, the development of airway hyperresponsiveness was observed in challenged mice, not MCMV/challenged mice. Thus, MCMV infection can modulate allergic airway inflammation, and these findings suggest that enhanced mucus production may occur independently of BAL fluid eosinophilia.  相似文献   

19.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

20.

Background

H89 is a potent inhibitor of Protein Kinase A (PKA) and Mitogen- and Stress-Activated protein Kinase 1 (MSK1) with some inhibitory activity on other members of the AGC kinase family. H89 has been extensively used in vitro but its anti-inflammatory potential in vivo has not been reported to date. To assess the anti-inflammatory properties of H89 in mouse models of asthma.

Methodology/Principal Findings

Mice were sensitized intraperitoneally (i.p.) to ovalbumin (OVA) with or without alum, and challenged intranasally with OVA. H89 (10 mg/kg) or vehicle was given i.p. two hours before each OVA challenge. Airway hyperresponsiveness (AHR) was assessed by whole-body barometric plethysmography. Inflammation was assessed by the total and differential cell counts and IL-4 and IL-5 levels in bronchoalveolar lavage (BAL) fluid. Lung inflammation, mucus production and mast cell numbers were analyzed after histochemistry. We show that treatment with H89 reduces AHR, lung inflammation, mast cell numbers and mucus production. H89 also inhibits IL-4 and IL-5 production and infiltration of eosinophils, neutrophils and lymphocytes in BAL fluid.

Conclusions/Significance

Taken together, our findings implicate that blockade of AGC kinases may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号