首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A population-balance model has been used to characterize continuous polyelectrolyte precipitation of egg white proteins. We have modeled the particle size distributions of aggregates formed under a range of mixing conditions. The models, accounting for aggregate growth (by both shear-driven and Brownian-like collisions), breakage (by hydrodynamic shear or aggregate-aggregate collisions), and birth (by the breakage of large aggregates), fit the data well. The kinetic constants show dependencies on shear rate and residence time that have not been previously theoretically predicted; these dependencies are due in part to aging effects on the aggregate. The model constants show a dominance of growth over breakage, supporting qualitative interpretations of the particle size distributions. A mechanism for growth-rate enhancement, caused by polymer extensions from the particle surfaces, produced improved model performance. A collisional breakage mechanism is supported.  相似文献   

2.
Protein aggregate growth and breakage in agitated suspensions are modeled. The model includes growth of particles by a turbulent collision mechanism and breakage by a hydrodynamic shear mechanism. In the model, breakage results in the splitting of the particles into several small fragments. The model parameters are a growth rate constant and a breakage rate constant. Aggregate size distributions were measured with a Coulter counter and the data interpreted using a population balance that governs the steady-state particle size distribution in a continuous stirred tank reactor. Effects of changes in the operating variables pH, concentration, mean residence time, ionic strength, and mixing power input on the model kinetic parameters are investigated.  相似文献   

3.
The effectiveness of ultraviolet radiation for on-line sterilization of cheese whey was investigated. The effects of flow rate and residence time on the performance of three UV reactors having different gap sizes (18, 13, and 6 mm) were studied. Six flow rates and six residence times were tested with the three UV reactors. The cheese whey used in this study had a very high turbidity (4317 NTU), very poor transmittance in the UV radiation germicidal range ( approximately 0%), and high percentage of large solid particles ( approximately 20% > 100 microm). Although the cheese whey physical characteristics showed low probability of sterilization using UV radiation, the study showed that UV radiation can be used on-line to sterilize cheese whey if the proper reactor gap size and the appropriate residence time are used. There were combined effects of the flow rate and gap size. The cell removal efficiency increased with increases in residence time and decreases in the UV reactor gap size. Removal efficiency of 100% was not achieved in this study with the first UV reactor (18-mm gap size), whereas 100% removal efficiency was achieved with the second (13-mm gap size) and third (6-mm gap size) UV reactors at residence times of 2.0 and 0.5 h, respectively. The microbial decay rates achieved in this study were 4.94, 7.62, and 20.9 h(-)(1) using the first, second, and third UV reactor, respectively. Residence times of 3.3, 2.1, and 0.8 h would be required to completely destruct a microbial population of 5.95 x 10(6) cells/mL using the first, second, and third UV reactors, respectively. Although cheese whey sterilization using UV radiation seems to be a good alternative to pasteurization, increases in cheese whey temperature resulted in lamp fouling. If online sterilization is to be used, the fouling problem should be investigated and a maintenance scheme for the UV reactor should be developed.  相似文献   

4.
Shear stress in suspension culture was investigated as a possible manipulative parameter for the control of glycosylation of the recombinant tissue-type plasminogen activator protein (r-tPA) produced by recombinant Chinese hamster ovary (CHO) cell culture, grown in protein-free media. Resulting fractions of partially glycosylated, Type II, and fully glycosylated, Type I, r-tPA protein were monitored as a direct function of the shear characteristics of the culture environment. The shear-induced response of CHO culture to levels of low shear stress, where exponential growth was not obtained, and to higher levels of shear stress, which resulted in extensive cell death, were examined through manipulation of the bioreactor stirring velocity. Both apparent and intrinsic cell growth, metabolite consumption, byproduct and r-tPA production, and r-tPA glycosylation, from a variable site-occupancy standpoint, were monitored throughout. Kinetic analyses revealed a shear-stress-induced alteration of cellular homeostasis resulting in a nonlinear dependency of metabolic yield coefficients and an intrinsic cell lysis kinetic constant on shear stress. Damaging levels of shear stress were used to investigate the shear dependence of cell death and lysis, as well as the effects on the intrinsic growth rate of the culture. Kinetic models were also developed on the basis of the intrinsic state of the culture and compared to traditional models. Total r-tPA production was maximized under moderate shear conditions, as was the viable CHO cell density of the culture. However, Type II r-tPA production and the fraction of Type II glycoform production ratio was maximized under damaging levels of shear stress. Analyses of biomass production yield coefficients coupled with a plug-flow reactor model of glycan addition in the endoplasmic reticulum (ER) were used to propose an overall mechanism of decreased r-tPA protein site-occupancy glycosylation with increasing shear stress. Decreased residence time of r-tPA in the ER as a result of increased protein synthesis related to shear protection mechanisms is proposed to limit contact of site Asn184 with the membrane-bound oligosaccharyltransferase enzyme in the ER.  相似文献   

5.
The short-time effects of shear on suspended cells of Perilla frutescens were quantitatively analyzed by exposing the cells to a well-defined flow field in a rotating drum reactor. It was found that both shear rate and shearing time significantly affected cell viability. The quantitative effects of shear on cell growth and the production of anthocyanin, a secondary metabolite, by the cell cultures were further investigated in a series of batch cultivations using a 5-L plant cell bioreactor with a marine impeller. The results indicated that there was an optimum range of shear rate; i.e., an average shear rate of 20 to 30 s(-1) or an impeller tip speed of 5 to 8 dm/s, which maximized all the values of the following parameters: the specific growth rate, the maximum cell concentration, the (specific) production and productivity of anthocyanin, and the cell and anthocyanin yields. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
In recipients of rotary blood pumps for cardiac assist, the pulsatility of arterial flow is considerably diminished. This influences the shear stress patterns and streamlines in the arterial bed, with potential influence on washout and plaque growth. These effects may be aggravated in the recirculation area of stenoses, and therefore, exclude patients with atherosclerosis from the therapy with these devices. A numerical study was performed for the human carotid artery bifurcation with the assumption of a massive stenosis (75% reduction of cross-section area) in the carotid bulb. Four different flow time patterns (no support to full pump support) were applied. Flow patterns and particle residence time within the recirculation region were calculated, once within the relevant volume behind the stenosis and and once within a small region directly at the posterior heel of the stenosis. The flow patterns showed a considerable radial vorticity behind the stenosis. Mean particle residence time in the whole recirculation region was 15% less for high pump support (nearly continuous flow) compared to the natural flow pattern (0.19s compared to 0.22s), and nearly identical for the small heel region (0.28 to 0.27s). The flow simulation demonstrates, that even in the case of a pre-existing stenosis, the local effects of continuous flow on particle residence times are rather minimal (as was shown previously for intact arterial geometries). Therefore, from the point of macroscopic flow field analysis, continuous flow should not enhance the thromboembolic risk in ventricular assist device recipients.  相似文献   

7.
To study the effects of the growth rate of the hybridoma cell Mn12 on productivity, cell cycle, cell size, and shear sensitivity, six continuous cultures were run at dilution rate of 0.011, 0.021, 0.023, 0.030, 0.042, and 0.058 h(-1). This particular hybridoma cell appeared to be unstable in continuous culture with respect to specific productivity, as a sudden drop occurred after about 30 generations in continuous culture, accompanied by the appearance of two populations with respect to the cytoplasmic lgG content. The specific productivity increased with increasing growth rate. The shear sensitivity of the cell, as measured in a small air-lift loop reactor, increased with increasing growth rate. The mean relative cell size, as determined with a flow cytometer, increased with increasing growth rates. Furthermore, the fraction of cells in the S phase increased, and the fraction of cells in the G1/G0 phase decreased with increasing growth rates. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
Sherwin SJ  Doorly DJ  Franke P  Peiró J 《Biorheology》2002,39(3-4):365-371
Building on previous studies of unsteady flow within model distal bypass grafts we analyse the near wall residence times and shear exposure in a 45 degrees anastomosis under symmetrical and symmetry breaking geometric configurations. We define residence time as the minimum time for a particle to exit a spherical region and shear exposure as a temporal integral of the Huber-Henky-von-Mises criterion along a particle path over a fixed time interval. Decomposing the pulsatile cycle into four equal intervals we find that the interval of peak residence time in the host vessel is from mid-deceleration to peak diastole and peak diastole to mid-acceleration. The asymmetric model is shown to have a significantly lower residence time during these intervals. Considering the shear exposure prior to the residence time evaluation we determine that a higher average shear exposure exists in the asymmetric model associated with the upstream geometry modification. Analysis of the regions of high residence time and shear exposure suggests that the "toe" region and the interface between the "heel" and bulk flow are more significant than the bed and heel region. Although the asymmetric model considered in this study reduces residence times in the host artery, the product of the measure of shear exposure and residence time is not found to be preferable. If shear exposure were to be considered as an important factor in particle activation, the findings imply that for junction optimisation, greater consideration needs to be given both to the local junction asymmetry and upstream influence on the shear history.  相似文献   

9.
Although critical to progress in understanding (i) if, and (ii) at what rate, introduced plants will naturalize and potentially become invasive, establishing causal links between traits and invasion success is complicated by data gaps, phylogenetic nonindependence of species, the inability to control for differences between species in residence time and propagule pressure, and covariance among traits. Here, we focus on statistical relationships between genomic factors, life history traits, native range size, and naturalization status of angiosperms introduced to Australia. In a series of analyses, we alternately investigate the role of phylogeny, incorporate introduction history, and use graphical models to explore the network of conditional probabilities linking traits and introduction history to naturalization status. Applying this ensemble of methods to the largest publicly available data set on plant introductions and their fates, we found that, overall, residence time and native range size best predicted probability of naturalization. Yet, importantly, probability of naturalization consistently increased as genome size decreased, even when the effects of shared ancestry and residence time in Australia were accounted for, and that this pattern was stronger in species without a history of cultivation, but present across annual–biennials, and herbaceous and woody perennials. Thus, despite introduction biases and indirect effects of traits via introduction history, across analyses, reduced genome size was nevertheless consistently associated with a tendency to naturalize.  相似文献   

10.
Effects of shear rate on rouleau formation in simple shear flow   总被引:2,自引:0,他引:2  
T Murata  T W Secomb 《Biorheology》1988,25(1-2):113-122
A kinetic equation for rouleau formation in a simple shear flow is derived, based on several assumptions. These are (a) colliding rouleaux stick to one another with a certain probability to form a single rouleau; (b) simultaneous collisions between more than two rouleaux are negligible; (c) rouleaux are broken by a viscous force exerted by the suspending fluid on the surfaces of rouleaux; (d) when a rouleau is broken by viscous forces, only two fragments are formed. Based on a simple mathematical model, collision rate, sticking probability and degradation rate are obtained as functions of applied shear rate. From the solution of the kinetic equation, the average size of rouleaux is obtained as a function of time with shear rate as a parameter. It is shown that the average size of rouleaux increases monotonically with increasing time and tends to an equilibrium size. The average size of rouleaux in a dynamical equilibrium decreases monotonically with increasing shear rate and tends to one cell as shear rate approaches infinity. It is also found that the initial rate of rouleau formation increases with increasing shear rate at very low shear rate, but this trend is reversed at higher shear rates. The theoretical results are compared quantitatively with experimental data.  相似文献   

11.
Gluconobacter suboxydans IFO 3290 was immobilized by adsorption on ceramic honeycomb monolith and continuous production of free gluconic acid from glucose was performed in an aerated reactor. The effects of reactor residence time, aeration rate, and glucose concentration were investigated on the gluconic acid yield. Observation of SEM photographs revealed that the cells were adsorbed with a high density not only on the outer surface of the support but also on the inner surface of large pores. From measurement of the number of the adsorbed cells, it was elucidated that the biofilm comprised a monolayer or bilayer of the cells. Maximum specific rate of growth was estimated for the free and adsorbed cells, and the adsorbed cells were found to grow at a fast rate compared with the free cells. In the continuous fermentation performed for one month at the glucose concentration of 100 kg/m(3), reactor residence time of 3.5 h and aeration rate of 900 cm(3)/min, the activity of the adsorbed cells was appreciably stable. The high productivity of 26.3 kg/(m(3)-reactor . h) was attained with the gluconic acid yield of 84.6% and glucose conversion of 94%.  相似文献   

12.
Ceramic membrane microfilter as an immobilized enzyme reactor.   总被引:1,自引:0,他引:1  
This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.  相似文献   

13.
Aim of the present work is quantifying the mechanical stress generated by some major process equipment used in massive microalgae culturing plants (centrifugal and air-lift pumps, and nozzles) and highlighting its effects on the microalgal population. Two microalgal species were used as test cases: Chlorella vulgaris (unicellular) and Scenedesmus dimorphus 1237 (colonial). The evaluation of the shear effect on algal growth was carried out through measurement of absorbance, photosynthetic activity (oxygen evolution) and variable chlorophyll fluorescence. Cell aggregate development/breakage was effectuated by visual inspection and light scattering. The use of centrifugal pumps for culture recycling strongly affected the growth of C. vulgaris, while nozzles effects were confined to aggregate breakage of S. dimorphus. The analysis of experimental data is supported by the consideration of hydrodynamic stress calculated by: shear rate, shear stress, stress volumes/times, energy dissipation rates, and turbulence microscale size.  相似文献   

14.
An improvement in the resistance of isoelectric soya protein precipitate to capillary shear disruption was achieved by aging in a stirred tank. The aggregate strength was found to depend on the extent and duration of agitation prior to exposure to shear. An optimum value of an aging parameter Gt approximately 10(5) was determined, where G is the rms velocity gradient in the aging vessel and tis the time of aging. The disruption of precipitate aggregates by exposure to high rates of shear for short times was dependent on the rate of shear and time of exposure. The dominant mechanism of aggregate breakup was fragmentation, with erosion occurring to a lesser extent. The size of the fragments produced by shear disruption was weakly dependent on the rate of shear, with higher rates of shear producing smaller fragments.  相似文献   

15.
The effects of seed size and sowing depth on the time of seedlingemergence and on the growth of spring cabbage studied in greenhouseand field experiments. Seed size had little effect on seedlingemergence time, but plants derived from large seeds were largerthan those from small seeds. Increased sowing depth delayedseedling emergence and reduced seedling relative growth rate(RGR). To our knowledge, these effects of sowing depth on RGRindependent of inter-plant competition have not been reportedpreviously for any species. Sowing depth had no effect on thenet assimilation rate (NAR) of seedlings, indicating that thelower RGR of seedlings from deep sowings was associated witha low light interception by small cotyledons which in turn resultedfrom disproportionately low partitioning of assimilates to thecotyledons during pre-emergence growth in favour of producinghypocotyls of greater length. Brassica oleracea, specific leaf area, growth analysis, dry matter partitioning, light interception, cabbage, seed size, sowing depth, seedling emergence time, relative growth rate, net assimilation rate  相似文献   

16.
The development and experimental verification at pilot scale of a suite of models for the batch precipitation by two-cut ammonium sulphate salting-out of total protein and alcohol dehydrogenase from yeast homogenate is presented. The model consists of two elements: protein and enzyme solubility prediction and precipitate phase particle property prediction. An isotherm-based approach has been used successfully to describe solubility behaviour for a range of operating conditions typical of those obtained at a process scale. Estimation of the precipitate phase particle size distributions has been achieved through a discretized population balance approach using simplified terms to account for particle breakage and aggregation. The developed model accounts for the effects of average shear rate and residence time in the precipitation vessel across a two orders of magnitude range of scale. The size-density relationship for the precipitate phase has been defined. Results of simulations are compared with pilot scale verification data to confirm the validity of the models developed.  相似文献   

17.
18.
François Darchambeau 《Oikos》2005,111(2):322-336
In the study of the stoichiometric relationship between autotrophs and herbivores, attention has been largely focused on effects of the encountered mismatch between needs and supplies of an element on herbivore growth and ecosystem processes. Herbivore adaptation to poor food quality has rarely been investigated. This study presents a predictive model of feeding, assimilation, digestion and excretion of Daphnia facing a dietary deficiency in phosphorus. Biochemical compounds in the food were divided into phosphorous and non-phosphorus compounds. It was assumed that Daphnia is able to differently assimilate both types of compounds by regulation of target specific digestive enzymes. Feeding rate was regulated by optimal gut residence time of food particles, and assimilation efficiency by gut residence time and optimal secretion of both classes of gut enzymes. The model predicted the optimal strategy for a consumer facing an elementally imbalanced diet: (1) increase the ingestion rate, and (2) increase the secretion rate of both classes of gut enzymes. It resulted in decreased C and nutrient assimilation efficiencies, increased C feeding costs, and reduced growth rate. Sensitivity analysis showed that these predictions were qualitatively not influenced by parameter values. An alternative model was tested that includes an additive term allowing the direct excretion of C assimilated in excess. Results showed that this strategy is not optimal for the consumer growth rate. In conclusion, the model supports the hypothesis that carbon ingested in excess may generate energy that can be used to obtain more nutrients by increased feeding rate.  相似文献   

19.
Abstract

Factors which affect mortality rates differ by size of place of residence. Mortality differentials were examined by size of place of residence for two recent time periods. A new method of rate adjustment was employed to eliminate the confounding effects of differences in age composition upon rates. Positive associations between adjusted mortality rates and size of place were evident in both metropolitan and nonmetropolitan counties. The smallest places in metropolitan counties had the lowest adjusted mortality rates. The adjusted mortality rates for males exceeded those for females in each size of place. These patterns were evident in data for both 1960 and 1970. The adjusted mortality rates for females declined by greater percentages than did those for males in each size of place between 1960 and 1970.  相似文献   

20.
Abstract.  1. For animal species that forage on patchily distributed resources, patch time allocation is of prime importance to their reproductive success. According to Charnov's marginal value theorem (MVT), the rate of patch encounter should influence negatively the patch residence time: as the rate of patch encounter decreases, the patch residence time increases. Moreover, the MVT predicts that animals should stay longer in high quality patches.
2. Using the aphid parasitoid Aphidius rhopalosiphi (Hymenoptera: Aphidiinae), the effects of these two factors (patch encounter rate and host density) were combined in order to test if the increment in patch residence time for a given decrease in patch encounter rate was larger for high quality patches than for low quality patches.
3. The results show a significant effect of the interaction between the two factors. In high host density patches, parasitoids spent more time if they experienced a low patch encounter rate, while in low host density patches, patch encounter rate had no significant effect on the patch residence time. This suggests that the response of A. rhopalosiphi females to patch encounter rate varied with host density in the patch. Moreover, the same interaction effect was observed for the number of ovipositor contacts on aphids.
4. Parasitoid females can use patch encounter rate to estimate patch density in the habitat but the effect of this estimate on their patch residence time is modulated by patch quality. Staying longer in a patch when patches are rare is more advantageous when the fitness gained by doing so is large. In low quality patches, the expected fitness gain is small and the female may gain more by leaving and taking her chance at finding another patch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号