首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N K Alton  D Vapnek 《Plasmid》1978,1(3):388-404
A genetic and physical map of Escherichia coli plasmid R538-1 was constructed using restriction endonucleases and molecular cloning techniques. R538-1 DNA was cleaved into 12 fragments by endonuclease · R · EcoRI, 6 fragments by endonuclease R · HindIII, and 3 fragments by endonuclease R · BamHI. The order of these fragments was determined by standard restriction fragment mapping techniques. Endo · R · EcoRI, endo · R · HindIII, endo · R · BamHI, and endo · R · PstI fragments obtained from R538-1 and ColE1-derived plasmids (pMB9, ColE1Apr, and pBR322) were ligated in vitro and used to transform E. coli C600. Transformants were selected for antibiotic resistance markers carried by R538-1. Analysis of the R538-1 fragments contained in these hybrid plasmids permitted the construction of a genetic map of the R538-1 plasmid. The genetic map of this plasmid is very similar to that of plasmid R100.  相似文献   

2.
Transposons Tn501 (specifying mercury resistance) and Tn7 (specifying resistance to trimethoprim and streptomycin) were introduced into extra-slow-growing Rhizobium japonicum by conjugal transfer of the 82 kilobase chimeric plasmid pUW942. Mercury-resistant transconjugants were obtained at a frequency of 10−7 to 10−9. The transfer frequency of streptomycin resistance was lower than that of mercury resistance, and Tn7 was relatively unstable. pUW942 was not maintained as an autonomously replicating plasmid in R. japonicum strains. However, some of the Hgr transconjugants from the RJ19FY, RJ17W, and RJ12S strains acquired antibiotic markers of the vector plasmid pUW942. Southern hybridization of plasmid and chromosomal DNA of R. japonicum strains with 32P-labeled pUW942 and pAS8Rep-1, the same plasmid as pUW942 except that it does not contain Tn501, revealed the formation of cointegrates between pUW942 and the chromosome of R. japonicum. More transconjugants with only Tn501 insertions in plasmids or the chromosome were obtained in crosses with strains RJ19FY and RJ17W than with RJ12S. These retained stable Hgr both in plant nodules and under nonselective in vitro growth conditions. One of the RJ19FY and two of the RJ12S Hgr transconjugants with vector plasmid-chromosome cointegrates conjugally transferred plasmids of 82, 84 or 86, and 90 kilobases, respectively, into plasmidless Escherichia coli C. These plasmids strongly hybridized to pUW942 and EcoRI digests of total DNA of each respective R. japonicum strain but not to indigenous plasmid DNA of the R. japonicum strains. These R′ plasmids consisted of pUW942-specific EcoRI fragments and an additional one or two new fragments derived from the R. japonicum chromosome.  相似文献   

3.
Summary DNA fragments generated by the EcoRI or HindIII endonucleases from the low copy number antibiotic resistance plasmids R6 and R6-5 were separately cloned using the high copy number ColEl or pML21 plasmid vectors and the insertional inactivation procedure. The hybrid plasmids that were obtained were used to determine the location of the EcoRI and HindIII cleavage sites on the parent plasmid genomes by means of electron microscope heteroduplex analysis and agarose gel electrophoresis. Ultracentrifugation of the cloned fragments in caesium chloride gradients localized the high buoyant density regions of R6-5 to fragments that carry the genes for resistance to streptomycin-spectinomycin, sulfonamide, and mercury and a low buoyant density region to fragments that carry the tetracycline resistance determinant. Functional analysis of hybrid plasmids localized a number of plasmid properties such as resistances to antibiotics and mercury and several replication functions to specific regions of the R6-5 genome. Precise localisation of the genes for resistance to chloramphenicol, kanamycin, fusidic acid and tetracycline was possible due to the presence of identified restriction endonuclease cleavage sites within these determinants.Only one region competent for autonomous replication was identified on the R6-5 plasmid genome and this was localized to EcoRI fragment 2 and HindIII fragment 1. However, two additional regions of replication activity designated RepB and RepC, themselves incapable of autonomous replication but capable of supporting replication of a linked ColE1 plasmid in polA bacteria, were also identified.  相似文献   

4.
The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid‐mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self‐transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4‐mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%–97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments.  相似文献   

5.
6.
The two SalI fragments derived from the F transfer region that are bounded at one end by the SalI cleavage site in traM were cloned into pBR322. From these, smaller (540 bases) SalI-BglII fragments were subcloned to give plasmids containing the origin of transfer oriT (pED806) and finP (pED812), respectively, but no entire tra genes. All four plasmids were characterized by genetic tests and by restriction endonuclease analysis. pED806 could not be used to search for an F oriT-related “relaxation complex” because of its unexpected instability in the presence of Flac, and extensive efforts to prepare such a complex using other oriT+ plasmids were unsuccessful. We therefore suggest that a cell-free F relaxation complex does not exist. Protein synthesis directed by pED812 in minicells allowed the finP product to be tentatively identified as a 4000 Mr, protein.  相似文献   

7.
Chen CY  Nace GW  Solow B  Fratamico P 《Plasmid》2007,57(1):29-43
The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria.  相似文献   

8.
Wild-type strains of Zymomonas mobilis exhibit multiple antibiotic resistance and thus restrict the use of many broad-host-range plasmids in them as cloning vehicles. Antibiotic-sensitive mutants of Z. mobilis were isolated and used as hosts for the conjugal transfer of broad-host-range plasmids from Escherichia coli. Such antibiotic-sensitive strains can facilitate the application of broad-host-range plasmids to the study of Z. mobilis.  相似文献   

9.
Plasmid content was investigated in hundred copiotrophic Gram-negative river water isolates that exhibited resistance to four or more antibiotics. A total of seventy-seven isolates were found to carry plasmids of varying sizes. These isolates were primarily grouped as Pseudomonads and members of Enterobacteriaceae on the basis of physiological and biochemical tests. Fifty-six isolates that were rifampicin-sensitive and belonged to Enterobacteriaceae family were chosen as donors for the conjugal transfer assay. Eighteen of the isolates successfully transferred conjugable plasmids to the E. coli DH5alpha recipient. Countable multiple antibiotic resistant transconjugants arose readily and conjugal transfer frequency was in the range of 3.75 x 10(-6) to 1.0 x 10(-1). The most common carriage of resistances conferred by transmissible R plasmids was against ampicillin, cefotaxim and cephalexin. The residence of class 1 integrons on conjugative R plasmids was confirmed in only six transconjugants. Gene cassettes borne on the integrons were identified to be dihydrofolate reductases (dhfrs). The major concern of this study was about the copiotrophs containing self-transmissible R plasmids which may be potential reservoirs of antibiotic-resistance genes and instrumental in dissemination of the same in the environment.  相似文献   

10.
Plasmid vectors for the selection of promoters   总被引:26,自引:0,他引:26  
J Brosius 《Gene》1984,27(2):151-160
  相似文献   

11.
Bacterial plasmids are ubiquitous ‘minichromosomes’ that have major importance in clinical microbiology, as agents of pathogenicity and as carriers of antibiotic resistance, and in molecular genetics, through their role as vectors in gene manipulation. Plasmids carry a wide range of dispensable, transiently useful and often bizarre functions.1 Naturally occurring plasmids, in addition to modifying the host cell phenotype, carry genes involved in the control of their own vegetative replication, plasmid copy number2 and stable inheritance. They may also carry determinants for the conjugal transfer of DNA between bacteria.3 Whereas low-copy-number plasmids must be partitioned by some active process during cell division, the evidence suggests that multicopy plasmids are distributed randomly between daughter cells. Two independent determinants are necessary for the stable inheritance of multicopy plasmids, and both of these appear to act by maximizing the number of independent plasmid molecules.  相似文献   

12.
Certain genetic, structural, and biochemical properties of a class 2 R-factor system consisting of the conjugally proficient transfer plasmid I and the naturally occurring non-conjugative tetracycline (Tc) resistance plasmid 219 are reported. I and 219 exist as separate plasmid deoxyribonucleic acid (DNA) species in both Escherichia coli and Salmonella panama, having molecular weights of 42 x 10(6) and 5.8 x 10(6), respectively. The buoyant densities of I and 219 are 1.702 and 1.710 g/cm(3), respectively, in neutral cesium chloride. Although the Tc resistance plasmid is not transmissible in a normal conjugal mating, it is mobilized in a three-component mating by plasmid I and by certain other conjugative plasmids of the fi(+) or fi(-) phenotype. Mobilization does not appear to involve intermolecular recombination between plasmids, and no covalent linkage of resistance markers and fertility functions is observed. Transformation of CaCl(2)-treated E. coli by plasmid DNA is shown to be a useful procedure for studying the biological properties of different plasmid molecular species that have been fractionated in vitro, and for selectively inserting non-self-transmissible plasmids into specific bacterial strains. The effects of tetracycline on the rate of protein synthesis carried out by plasmid 219 were studied by using isolated E. coli minicells into which this plasmid had segregated. Consistent with the results of earlier investigations showing the inducibility of plasmid-mediated Tc resistance in E. coli, the antibiotic was observed to stimulate protein synthesis in minicells carrying the plasmid 219 and totally inhibit (3)H-leucine incorporation by minicells lacking the Tc resistance marker. Five discrete polypeptide species were synthesized by minicells carrying plasmid 219; exposure of minicells or parent bacteria to Tc resulted in specific and reproducible changes in polypeptide synthesis patterns.  相似文献   

13.
A Klebsiella strain of human origin that was resistant to ampicillin, chloramphenicol, kanamycin, neomycin, streptomycin, and tetracycline was found to have all of these resistances associated with a R factor and a satellite molecular species of deoxyribonucleic acid (DNA) with an average buoyant density of 1.710 in cesium chloride gradients. There was no evidence of the existence of DNA with other buoyant densities. The strain bears two separable mutations for chloramphenicol resistance, both of which are associated with the R factor (KR9). Exposure of the Klebsiella strain to acridine derivatives or to ethidium bromide (which was more efficient) resulted in partial losses of resistance accompanied by the disappearance of the satellite DNA peak or shifts in its density. The R factor and its component genes were conjugally transmitted across generic boundaries and maintained in new hosts with different efficiencies. The basis of this difference lies not only in the efficiency of conjugal transfer but also in the stability of the components after transfer. All of the resistance genes and the resistance transfer factor were cotransducible by phage Plkc from Escherichia coli. Partially resistant strains could be reconstituted to full resistance or to a recombined pattern of partial resistance by conjugation with donors having complementary resistance patterns. This recombination serves as an efficient mechanism for rescuing superinfecting genes that are otherwise intracellularly excluded. KR9 is an fi+ type of R factor which in the natural state does not appear to be as repressed in conjugal transfer as other R factors.  相似文献   

14.

Background

Klebsiella pneumoniae is a clinically significant species of bacterium which causes a variety of diseases. Clinical treatment of this bacterial infection is greatly hindered by the emergence of multidrug-resistant strains. The resistance is largely due to the acquisition of plasmids carrying drug-resistant as well as pathogenic genes, and its conjugal transfer facilitates the spread of resistant phenotypes.

Methodology/Principal Findings

The 70,057 bp plasmid pKF3-70, commonly found in Klebsiella pneumoniae, is composed of five main functional modules, including regions involved in replication, partition, conjugation, transfer leading, and variable regions. This plasmid is more similar to several Escherichia coli plasmids than any previously reported K. pneumoniae plasmids and pKF3-70 like plasmids share a common and conserved backbone sequence. The replication system of the pKF3-70 is 100% identical to that of RepFII plasmid R100 from E. coli. A beta-lactamase gene ctx-m-14 with its surrounding insertion elements (ISEcp1, truncated IS903 and a 20 bp inverted repeat sequence) may compose an active transposon which is directly bordered by two putative target repeats “ATTAC.”

Conclusions/Significance

The K. pneumoniae plasmid pKF3-70 carries an extended-spectrum beta-lactamase gene, ctx-m-14. The conjugative characteristic makes it a widespread plasmid among genetically relevant genera which poses significant threat to public health.  相似文献   

15.
Summary Four plasmids Rsc10–13 ranging in size from 5.1×106 to 13.4×106 Dalton have been isolated from a strain carrying the copy mutant R1drd-19B2 of the antibiotic resistance factor R1. The Rsc plasmids have been cloned by transformation in Escherichia coli C. They determine high level resistance to ampicillin and occur in the cell in multiple copies. Their copy number and stability in the bacterial cell depend on the plasmid and the host strain.Physical maps of these plasmids have been constructed by cleavage with restriction endonucleases HincII, EcoRI, HindIII, BamI and SmaI. The pattern of the cleavage fragments have been compared with the parent plasmid R1drd-19B2 and with a R1 deletion mutant, R1drd-16, which has lost the ampicillin resistance. For Rsc11 and Rsc10 the data indicate, that both plasmids derive from a continuous stretch of the R1drd-19B2 DNA extending from the ampicillin transposon (TnA) to the replication site of the R1 factor. The plasmids Rsc12 and 13 have lost a DNA sequence between TnA and the replication site of R1. They may be formed by translocation of TnA to different autonomously replicating fragments of R1drd-19B2 including the replication origin or by deletion of DNA sequences from Rsc10 and Rsc11.  相似文献   

16.
Plasmids belonging to the IncU incompatibility group are mobile genetic elements isolated frequently from Aeromonas spp. These plasmids share structural and functional characteristics and often carry Class-1 integrons bearing antibiotic resistance genes. In this work the ability of two IncU plasmids, pAr-32 and pRAS1 to establish in different A. hydrophila strains after conjugal transfer was studied. In vitro transfer frequencies on solid surface ranged from 10−1 to 10−6 for pAr-32 and from 10−3 to 10−5 for pRAS1. While carrying out these experiments we detected four strains unable to acquire plasmid pRAS1, indicating that the genetic background of recipients affects the establishment of the plasmid. We explored the possible reasons why these strains failed to yield transconjugants after mating experiments using A. salmonicida 718 as a donor. Factors included donor cell recognition, incompatibility, surface exclusion and restriction of incoming DNA. We found that none of these factors could explain the refractivity of non-receptive A. hydrophila strains to yield transconjugants. Although we do not know the reasons of this refractivity, we may speculate that these isolates lack a product necessary to replicate or stabilize plasmid pRAS1. Alternatively, these strains could contain a product that impedes plasmid establishment.  相似文献   

17.

Background

Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq.

Methodology/Principal Findings

In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥3) plasmids compared to their non-MDR counterparts, which carried ≤2 plasmids (p<0.01). Various large plasmids (∼52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla TEM1, bla AMPC, bla CTX-M-15, bla OXA-1, bla VIM-2 and bla SHV), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates.

Conclusions/Significance

This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.  相似文献   

18.
Conjugal replication of R64-11 deoxyribonucleic acid (DNA) and the concomitant transfer of R64-11 DNA to DNA-deficient minicells are dependent upon processes that are inhibited by rifampin and chloramphenicol. The rifampin-sensitive product is not present in vegetatively growing cells and is needed to initiate both conjugal DNA replication in donor cells and DNA transfer to recipient minicells. If the rifampin-sensitive product is a ribonucleic acid (RNA) molecule (rather than RNA polymerase itself), our data indicate that this RNA species required for initiation of conjugal activity does not need to be translated into a protein product. The chloramphenicol-sensitive product(s) is present in vegetatively growing cells in sufficient quantity to permit most donor cells to carry out one round of plasmid conjugal replication and transfer. The initiation of second and subsequent rounds of conjugal replication and transfer are dependent on the synthesis of both the rifampin-sensitive and chloramphenicol-sensitive products. Our results demonstrate a correspondence between the amount of conjugal DNA replication in the donor and the amount of DNA transferred to recipient minicells under all conditions, and therefore suggest but do not prove that plasmid transfer is dependent on conjugal DNA replication. The results also add additional proof that R64-11 transfer to minicells is discontinuous. All of these results are discussed in regard to further refinements of old models for the mechanism of conjugal transfer as well as a more radical departure from current dogma.  相似文献   

19.
An experimental approach based on the assembly of genes of a catabolic pathway was used to detect transconjugants in aquatic communities. Resistance to phenylmercury acetate was established in transconjugants when wide-host-range conjugal plasmids containing merB, the gene encoding organomercurial lyase, were transferred to strains from aquatic communities that had been acclimated to inorganic mercury and thus enriched for populations containing merA, the gene encoding mercuric reductase (T. Barkay, Appl. Environ. Microbiol. 53:2725-2732, 1987). Conjugation was confirmed by using the plasmids' encoded antibiotic resistance patterns and by hybridization with a eukaryotic gene. Three merB-conjugal plasmids, belonging to incompatibility groups W (pGTE16), P1 (pGTE26), and N (pGTE25), were prepared. Transfers by filter matings of pGTE16 and pGTE26 from Pseudomonas aeruginosa PA01 to indigenous strains were at efficiencies of 4.5 × 10-2 and 4.8 × 10-3 transconjugant per potential recipient, respectively. These efficiencies were from 1 to 2 orders of magnitude below those observed for intraspecies matings with genetically marked recipients. The third plasmid, pGTE25, was not stably maintained in P. aeruginosa donors, and its transfer from Escherichia coli donors was below the level of detection. Characterized transconjugant strains were shown to be Pseudomonas spp. Potential applications of the described experimental approach in the creation of bacterial populations with new catabolic capabilities in hazardous waste sites and in the detection of transfer of recombinant DNA from engineered microorganisms to indigenous bacteria are discussed.  相似文献   

20.
The spread of antibiotic resistant bacteria worldwide presents a major health threat to human health care that results in therapy failure and increasing costs. The transfer of resistance conferring plasmids by conjugation is a major route by which resistance genes disseminate at the intra- and interspecies level. High similarities between resistance genes identified in foodborne and hospital-acquired pathogens suggest transmission of resistance conferring and transferrable mobile elements through the food chain, either as part of intact strains, or through transfer of plasmids from foodborne to human strains. To study the factors that affect the rate of plasmid transfer, the transmission of an extended-spectrum β-lactamase (ESBL) plasmid from a foodborne Escherichia coli strain to the β-lactam sensitive E. coli MG1655 strain was documented as a function of simulated environmental factors. The foodborne E. coli isolate used as donor carried a CTX-M-1 harboring IncI1 plasmid that confers resistance to β-lactam antibiotics. Cell density, energy availability and growth rate were identified as factors that affect plasmid transfer efficiency. Transfer rates were highest in the absence of the antibiotic, with almost every acceptor cell picking up the plasmid. Raising the antibiotic concentrations above the minimum inhibitory concentration (MIC) resulted in reduced transfer rates, but also selected for the plasmid carrying donor and recombinant strains. Based on the mutational pattern of transconjugant cells, a common mechanism is proposed which compensates for fitness costs due to plasmid carriage by reducing other cell functions. Reducing potential fitness costs due to maintenance and expression of the plasmid could contribute to persistence of resistance genes in the environment even without antibiotic pressure. Taken together, the results identify factors that drive the spread and persistence of resistance conferring plasmids in natural isolates and shows how these can contribute to transmission of resistance genes through the food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号