首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
H.Y. Ye  Y.J. Lou   《Phytomedicine》2005,12(10):735-741
The aims of the present study were to determine the estrogenic activities of icariin (ICA) and its derivatives and their structure–estrogenic activity relationship. Therefore, icaritin (ICT) and desmethylicaritin (DICT) were derived from ICA. The estrogenic activities of ICA, ICT and DICT were examined by cell proliferation and progestogen receptor mRNA expression of estrogen-receptor-positive MCF-7 cells. Current studies exhibited that ICT and DICT both markedly enhanced the proliferation of MCF-7 cells; as compared to estradiol (100%), their relative proliferative effects (RPE) were 90% and 94%, respectively. Cell proliferation induced by ICT and DICT was completely antagonized by ICI182,780. ICT and DICT increased progestogen receptor (PR) at mRNA levels at 48 h after treatment, although the effects were not as prominent as 17β-estradiol (E2). These phenomena were not observed with ICA. Results demonstrate that ICT and DICT (nonconjugated forms) possess estrogen-like activity; however, ICA appears to have no estrogenicity in the MCF-7 cell line model in vitro.  相似文献   

2.
Cloned human MCF-7 breast tumor cells were prevented from proliferating when grown in charcoal-dextran stripped human female serum (CDFHS)-supplemented media (40% and 10%); this inhibition was maximally cancelled by estradiol-17, cisTamoxifen, and Metabolite E, whereas Tamoxifen, N-desmethylTamoxifen and Metabolite Y only partially blocked the inhibitory effect of CDFHS. The efficiency of this reversing effect was estradiol-17 greater than Metabolite E greater than cisTAM greater than OHTAM greater than TAM = Metabolite Y. CDFHS at 2% allowed for near maximal cell yield; estradiol-17 at concentrations above 3 X 10(-10) M inhibited cell proliferation whereas at lower concentrations was ineffective. All the triphenylethylenes tested at 2% CDFHS were toxic above 3 X 10(-7) M; beyond these concentrations, these drugs did not significantly affect the cell yield. The proliferative properties of E2 and these triphenylethylenes do not directly correlate with their binding affinities to the intracellular estrophilins. Finally, the control of the proliferation of C7MCF7-173 cells appears to be affected by the interaction among a) estradiol-17 or the triphenylethylenes, b) a specific blood-borne inhibitor of the proliferation of estrogen-sensitive cells (estrocolyones), and c) an inhibitor "receptor"-like structure in these target cells.  相似文献   

3.
R-27 cells, a tamoxifen-resistant clone of MCF-7 mammary cancer cells, were used to study the effect of tamoxifen and its derivatives (4-hydroxytamoxifen, N-desmethyltamoxifen and cis-tamoxifen) on the conversion of estrone sulfate to estradiol. The present data indicate that (1) tamoxifen, 4-hydroxytamoxifen, N-desmethyltamoxifen and cis-tamoxifen inhibit the uptake of the radioactivity after incubation of these triphenylethylene derivatives with [3H]-estrone sulfate; (2) there is a significant decrease of the conversion of estrone sulfate to estradiol by these antiestrogens; (3) the concentrations of estradiol (cytosol + 0.6 M KCl nuclear extract) which are 293 +/- 50 pg/mg DNA in the control studies (estrone sulfate alone), diminish to 26 +/- 5 pg/mg DNA after addition of tamoxifen, to 9 +/- 2 with 4-hydroxytamoxifen, to 24 +/- 7 with N-desmethyltamoxifen and to 32 +/- 6 with cis-tamoxifen. It is concluded that estrone sulfate can play an important role in the biological responses to estrogens in this breast cancer cell line and tamoxifen and its derivatives block the conversion of estrone sulfate to estradiol. The decrease in concentration of estradiol could be explained by the presence of the estrogen receptor system but other ways of the action of antiestrogens remain to be explored.  相似文献   

4.
Tamoxifen is a nonsteroidal estrogen-receptor modulator widely used in the treatment of breast cancer. Apoptosis has been reported to be a major mechanism for its antitumor effect. In the current studies, an endeavor was made to investigate the efficacy of vesicularly encapsulated tamoxifen on human breast cancer MCF-7 cells. Phospholipid-based vesicular systems viz. conventional liposomes and elastic-membrane liposomes were employed to encapsulate the drug. The MTT colorimetric assay was used to determine the efficacy of the tested formulations. The results demonstrated composition-dependent strong inhibition in the viability of MCF-7 cells with encapsulated tamoxifen vis-à-vis free drug. The encouraging findings from the current work construe immense potential of the lipid-based vesicular systems in the treatment of breast cancer.  相似文献   

5.
Tamoxifen is a nonsteroidal estrogen-receptor modulator widely used in the treatment of breast cancer. Apoptosis has been reported to be a major mechanism for its antitumor effect. In the current studies, an endeavor was made to investigate the efficacy of vesicularly encapsulated tamoxifen on human breast cancer MCF-7 cells. Phospholipid-based vesicular systems viz. conventional liposomes and elastic-membrane liposomes were employed to encapsulate the drug. The MTT colorimetric assay was used to determine the efficacy of the tested formulations. The results demonstrated composition-dependent strong inhibition in the viability of MCF-7 cells with encapsulated tamoxifen vis-à-vis free drug. The encouraging findings from the current work construe immense potential of the lipid-based vesicular systems in the treatment of breast cancer.  相似文献   

6.
Bisphenols constitute a family of compounds, which includes many substances that have as a common chemical structure two phenolic rings joined together through a bridging carbon. In the present study, we aimed to determine whether several events triggered by 17 beta-estradiol (E(2)) in MCF-7 breast cancer cells were also observed in response to various bisphenol-A (BPA) analogues. We studied the expression of estrogen controlled genes by measuring the induction of pS2 (mRNA and protein) and progesterone receptor (PgR) as well as the expression of a luciferase reporter gene transfected into MVLN cells. These data were compared to the cell proliferation potency and effectiveness as the latest expression of estrogen controlled functions. Bisphenols showed an agonistic effect in all our assays, suggesting that these compounds may act through all the response pathways triggered by the natural hormone. We found differences between the assays in the potency of bisphenols, defined as the minimum concentration required to produce a maximal effect. In the cell proliferation assay, all tested compounds needed a lower concentration than in the other assays to give maximal response. Our results suggest that the polarity and nature of the substituent in the central carbon determines the estrogenic potency. Presence of two propyl chains at the central carbon appears to confer the greatest potency in both gene and protein expression assays.  相似文献   

7.
Overnight preincubation of MCF-7 cells with 2 x 10(-10) M estradiol (E2) produces a dramatic reduction of their specific [3H]E2 binding capacity. Scatchard plot analysis revealed that this loss of estrogen receptor (ER) concentration, usually termed "processing", occurs without any significant modification of binding properties of the unprocessed receptors. Direct measurement of ER (ER-EIA from Abbott) gave residual receptor concentrations close to those established by binding assay indicating that processing involves the loss of at least one epitope other than the steroid binding site. Incubation with increasing amounts of E2 (0.1 to 5 x 10(-10) M) resulted in an increasing reduction of binding capacity indicating that the extent of processing is associated with the hormone concentration. Steroidal estrogens other than E2 as well as antiestrogens of the triphenylethylene category behaved similarly in this regard although the latter compounds usually acted only when at higher concentrations. The processing capacity of a large series of ligands was compared with the corresponding binding affinity for ER as assessed by classical competitive inhibition of [3H]E2 binding in both cytosol and whole cells. For steroidal estrogens, a large spectrum of concordant values was found which correlated with the known uterotrophic activity of the compounds. On the contrary, weak estrogen and antiestrogens of the triphenylethylene category displayed low processing capacities which were in the order of magnitude of the binding affinities established in whole cells; these values were considerably lower than the corresponding values measured in the cytosol. These observations are consistent with the concept that the capacity of a ligand to process ER is related to its agonistic activity. They also support our hypothesis (J. steroid Biochem. 25 (1986) 677-682) that assessment of the ability of a ligand to inhibit the binding of [3H]E2 in whole cells provides an estimate of its agonistic activity, an estimate which can not be established in the corresponding cytosol assay.  相似文献   

8.
Despite the wide use of Chinese licorice root (Glycyrrhiza uralensis) for the treatment of menopausal complaints, little is known on its potential estrogenic properties, and available information relative to its effects on cell proliferation is contradictory. In this study, the estrogenic properties of licorice root were evaluated in vitro by use of several assays. The effects of increasing concentrations of a DMSO extract of licorice root on the growth of MCF-7 breast cancer cells were biphasic. The extract showed an ER-dependent growth-promoting effect at low concentrations and an ER-independent anti-proliferative activity at high concentrations. In further experiments, licorice root was sequentially extracted to yield four fractions: hexane, EtOAc, methanol and H2O. Only the EtOAc extract had effects on cell proliferation similar to the DMSO extract. The hexane extract had no effect on cell growth. In contrast, the methanol and water extracts showed an ER-independent, growth-promoting effect. Similar to its effects on cell proliferation, the EtOAc extract had a biphasic effect on S phase cell cycle distribution and the level of PCNA protein. This extract-induced transactivation of endogenous ERα in MCF-7 cells, supported by inducing down-regulation of ERα protein and mRNA levels, and up-regulation of ERα target genes pS2 and GREB1. These results suggest that the activity of licorice root and the balance between increased risk for cancer and prevention of estrogen-dependent breast cancer may depend on the amount of dietary intake.  相似文献   

9.
Procymidone modifies sexual differentiation in vitro and induces estrogenic activity in primary cultured rainbow trout hepatocytes, as shown by an increase in the contents of vitellogenin and heat shock proteins. Since this dicarboximide fungicide is found in human tissues, it was considered of interest to investigate its ability to induce endocrine damage in the MCF-7 human cell line. The mechanism of this estrogenic action was also evaluated. Procymidone 100 microM stimulated cell growth from day 3 up to day 12 and raised the level of pS2 on day 3. Although procymidone does not bind the estrogen receptor (ER), the antiestrogen ICI 182780 inhibited its effect on cell growth and pS2 content, suggesting that the ER is involved indirectly in these effects. In exploring the mechanism of ER indirect activation we found that the antibody against c-Neu receptor (9G6) did not modify procymidone's effects on cell growth and pS2 expression. Thus, procymidone does not bind the c-Neu membrane receptor, excluding this indirect ER activation pathway. We also found that procymidone induced mitogen-activated protein kinase (MAPK) at 15 and 30 min, and that PD 98059, a MAPK (Erk1/2) inhibitor, prevented procymidone's effects on cell growth and pS2, indicating that MAPK activation is responsible for procymidone ER activation. The production of reactive oxygen species (ROS) with these times and elimination of the phenomenon by alpha-tocopherol (alpha-T), a ROS scavenger, is proof that oxygen free-radical production is at the basis of the MAPK activation by procymidone.  相似文献   

10.
Erythropoietin (EPO) is widely used to treat anemia in patients undergoing chemotherapy for cancers. The main objective of this study was to investigate the effect of rHuEPO on the response of spheroid breast cancer, MCF-7, cells to tamoxifen treatment. The MCF-7 spheroids were treated with 10 mg/mL tamoxifen in combination with either 0, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The viability of the MCF-7 cells was determined using the annexin-V, cell cycle, caspases activation and acridine orange/propidium iodide staining. rHuEPO-tamoxifen combination significantly (p greater than 0.05) increased the number of spheroid MCF-7 cells entering early apoptotic phase after 12 h and late apoptotic phase after 24 h of treatment; primarily the result of the antiproliferative effect tamoxifen. Tamoxifen alone significantly (p < 0.05) increased the caspase-3 and −9 activities in the spheroid MCF-7 cells by 200 to 550% of the control. Combination rHuEPO and tamoxifen produced much lesser effect on the caspase-8 activity. The rHuEPO in the combination treatment had concentration-dependently caused decrease in the caspase activities. rHuEPO-tamoxifen combination markedly increased MCF-7 cells entering the SubG0/G1 phase of the cell cycle by more than 500% of the control, while decreasing those entering the G2 + M and S phases by 50%. After 72 h, the combination treatment produced greater (p < 0.05) change in the SubG0/G1 phase than tamoxifen treatment alone. Morphologically, spheroid MCF-7 cells subjected to combination rHuEPO-tamoxifen treatment showed nuclear condensation and margination, cytoplasmic blebbing, necrosis, and early and late apoptosis. Thus, the study showed that rHuEPO-tamoxifen combination induced apoptosis in the spheroid MCF-7 cells. The apoptotic effect of the rHuEPO-tamoxifen combination treatment on the MCF-7 cells was greater than that produced by tamoxifen alone. The rHuEPO-tamoxifen treatment enhanced the caspase-independent apoptotic effects of tamoxifen on the spheroid MCF-7 cells.  相似文献   

11.
12.
The growth-stimulation of MCF-7 human breast cancer cells in vitro induced by 30 pM estradiol was inhibited both by the LHRH-agonist Buserelin and the anti-estrogen Tamoxifen used as single agents. Combined administration of both drugs was less effective in this respect. In the presence of estradiol Buserelin had no effect on the pattern of [35S]methionine labelled secretory proteins when examined with one-dimensional gel electrophoresis, whereas the estrogen-induced progesterone receptor synthesis was inhibited. Thus with estradiol concentrations comparable to plasma values in medically castrated patients, the LHRH-agonist Buserelin can directly inhibit breast cancer cell growth in vitro.  相似文献   

13.
14.
Breast cancer cell cultures were exposed to different concentrations of black cohosh, estradiol (E2), and tamoxifen to examine the effect on cell proliferation; cytotoxicity was assessed by using sulforhodamine B (SRB) dye solution. E2 (10(-10) - 10(-8) mol/L) markedly stimulated the proliferation of MCF-7 cells (p < 0.01). Tamoxifen stimulated MCF-7 cell proliferation at 10(-6) mol/L and 10(-5) mol/L (p < 0.005) but inhibited in a dose-dependent fashion the proliferative effect of E2 (p < 0.001). Black cohosh alone did not show any stimulatory effect, but exhibited a cytotoxic effect, which was significant at 10(3) microg/mL (p < 0.001). Adding black cohosh at 10(0)-10(3) microg/mL to E2 at 10(-9) mol/L also resulted in a dose-dependent inhibition of E2 proliferative effect. Interestingly, the combination of black cohosh (10(0)-10(3) microg/mL) with increasing tamoxifen concentrations further inhibited MCF-7 cell growth. On MDA-MB-231 cells, neither E2 nor tamoxifen displayed any detectable effect. However, black cohosh inhibited MDA-MB-231 cell proliferation at 10(3) microg/mL (p < 0.05), and this inhibitory effect was enhanced by increasing tamoxifen concentrations. This study reveals a cytotoxic effect of black cohosh on both estrogen-sensitive and estrogen-insensitive breast cancer cells and a synergism with tamoxifen for inhibition of cancerous cell growth.  相似文献   

15.
Abstract

Estradiol stimulation of thymidine incorporation and progesterone receptor synthesis is at a maximum in exponentially growing cells. These activities are found to disappear in confluent MCF-7 cells. Since no significant differences in the binding of estradiol to its receptor site (Kd = 10?10 M, Bmax = 150 fm/mg protein) are observed in these two conditions, receptor structure was analyzed in both cell populations. Various methods demonstrated that receptor size is related to the state of confluence. The hydrodynamic properties of estradiol receptors complexed with 3H-estradiol from cells in the two different growth phases are similar in low ionic strength but different in high ionic strength media. Moreover, when the cell extracts are analyzed in denaturing  相似文献   

16.
BackgroundAcquired tamoxifen resistance is a significant problem in estrogen receptor positive breast cancer. In a cellular model, tamoxifen resistance was associated with increased sensitivity towards toxic dicarbonyls and reduced free sulfhydryl group content. We here analyzed the role of oxidative stress and glyoxalase I activity on dicarbonyl resistance and the significance of glyoxalase I expression for survival.MethodsReactive oxygen species were determined by 2,7-dihydrochlorofluorescein diacetate. Inhibitors for NADPH-oxidase (diphenyleneiodonium), p38 MAPK (SB203580) and ERK1/2 (UO126) were applied to investigate interactions of these signaling molecules. N-acetyl cysteine was used to evaluate the effect of oxidative stress on cell viability, which was assessed by the resazurin assay. Gene expression was analyzed by real time qRT-PCR. Glyoxalase activity was inhibited by the specific inhibitor CS-0683 and siRNA. The relevance of glyoxalase 1 mRNA abundance on survival of breast cancer patients was evaluated by the KM-plotter web interface.Resultsα-Oxo-aldehydes caused an immediate increase in reactive oxygen species where the tamoxifen resistant cell line (TamR) responded at lower concentrations than the MCF-7 parental cell line. Inhibitor studies placed ROS production by NADPH-oxidase downstream of p38 MAPK. The antioxidant N-acetyl cysteine (NAC) increased survival, whereas glyoxalase (GLO1) inhibition increased dicarbonyl toxicity. GLO1 mRNA abundance was correlated with unfavorable prognosis of breast cancer patients.ConclusionsDicarbonyl toxicity was mediated by oxidative stress and GLO1 activity determines aldehyde toxicity in tamoxifen resistant cells.General SignificanceGlyoxalases might be predictive biomarkers for tamoxifen resistance and a putative target for the treatment of tamoxifen resistant breast cancer patients.  相似文献   

17.
The presence of steroidal esters in hormonally sensitive tissues lends importance to the esterases which convert the biologically inactive adducts to the parent potent forms. Accordingly, esterase-activities were studied in a human breast cancer model--the MCF-7 cell line. Tritiated estradiol esters- estradiol-17-acetate (EA), estradiol-17-valerate (EV) and estradiol-17-stearate (ES) were tested systematically, but 3 beta-ol esters of androgens, and phorbol diesters were also investigated. All compounds tested, except the phorbol diesters were hydrolyzed either when added to growing cultures or to the 28,000 g supernate of homogenized MCF-7 cells. Among the estrogens, the relative rates of hydrolysis were EA greater than EV greater than ES. The esterase for EA was different as it was not inhibited by saturating concentrations of EV or ES, and unlike the others its activity was stimulated by the addition of estradiol to the culture medium. The antiestrogen keoxifene,[(6-Hydroxy-2-(4-hydroxyphenyl)benzo less than b greater than thien-3-yl greater than less than 4- less than 2-(1-piperidinyl)ethoxy greater than phenyl greater than methanone], negated the stimulatory effect. Other major classes of steroids did not influence EA esterase activity. Results of inhibition experiments indicated that the esterases are of the serine active-site types. The significance of the estrogen-dependent esterase activity can be assessed when the natural substrate(s) for the enzyme is elucidated.  相似文献   

18.
19.
20.
The comparative mitogenic activities of 17beta-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 2-hydroxyestrone (2-OHE1), 16alpha-hydroxyestradiol (16alpha-OHE2) and 16alpha-hydroxyestrone (16alpha-OHE1) were determined in estrogen receptor (ER)-positive MCF-7 and T47D human breast cancer cells. E2 (1 nM) induced a 7- to 13-fold increase in cell number in both cell lines compared to untreated cells and the mitogenic potencies of 16alpha-OHE1 or 16alpha-OHE2 were comparable to or greater than E2. In contrast, 2-OHE1 and 2-OHE2 were weak mitogens in both cell lines and in cells cotreated with 1 nM E2 and 100 or 1000 nM 2-OHE1 or 2-OHE2, there was a significant inhibition of hormone-induced cell proliferation. The comparative ER agonist/antagonist activities of E2 and the metabolites on transactivation were determined in T47D cells transiently transfected with constructs containing promoter inserts from the cathepsin D (pCD) and creatine kinase B (pCKB) genes. E2, 16alpha-OHE2 and 16alpha-OHE1 induced reporter gene activity in both MCF-7 or T47D cells transfected with pCKB or pCD. In contrast, 2-OHE1 and 2-OHE2 did not exhibit ER agonist activity for these transactivation assays, but in cells cotreated with E2 plus 2-OHE1 or 2-OHE2, there was a significant decrease in the hormone-induced response. These results demonstrate that 16alpha-OHE1/16alpha-OHE2 exhibit estrogenic activities similar to that observed for E2, whereas the 2-catecholestrogens are weak ER agonists (cell proliferation) or antagonists (cell proliferation and transactivation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号