首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal muscle changes after endurance training at high altitude.   总被引:8,自引:0,他引:8  
The effects of endurance training on the skeletal muscle of rats have been studied at sea level and simulated high altitude (4,000 m). Male Wistar rats were randomly assigned to one of four groups: exercise at sea level, exercise at simulated high altitude, sedentary at sea level, and sedentary at high altitude (n = 8 in each group). Training consisted of swimming for 1 h/day in water at 36 degrees C for 14 wk. Training and exposure to a high-altitude environment produced a decrease in body weight (P less than 0.001). There was a significant linear correlation between muscle mass and body weight in the animals of all groups (r = 0.89, P less than 0.001). High-altitude training enhanced the percentage of type IIa fibers in the extensor digitorum longus muscle (EDL, P less than 0.05) and deep portions of the plantaris muscle (dPLA, P less than 0.01). High-altitude training also increased the percentage of type IIab fibers in fast-twitch muscles. These muscles showed marked metabolic adaptations: training increased the activity levels of enzymes involved in the citric acid cycle (citrate synthase, CS) and the beta-oxidation of fatty acids (3 hydroxyacyl CoA dehydrogenase, HAD). This increase occurred mainly at high altitude (36 and 31% for HAD in EDL and PLA muscles; 24 and 31% for CS in EDL and PLA muscles). Training increased the activity of enzymes involved in glucose phosphorylation (hexokinase). High-altitude training decreased lactate dehydrogenase activity. Endurance training performed at high altitude and sea level increased the isozyme 1-to-total lactate dehydrogenase activity ratio to the same extent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Lion (Panthera leo) and caracal (Caracal caracal) skeletal muscle samples from Vastus lateralis, Longissimus dorsi and Gluteus medius were analyzed for fiber type and citrate synthase (CS; EC 2.3.3.1), 3-hydroxyacyl Co A dehydrogenase (3HAD; EC 1.1.1.35), phosphofructokinase-1 (PFK; EC 2.7.1.11), creatine kinase (CK; EC 2.7.3.2), phosphorylase (PHOS; EC 2.4.1.1) and lactate dehydrogenase (LDH; EC 1.1.1.27) activities and compared to human runners, the latter also serving as validation of methodology. Both felids had predominantly type IIx fibers (range 50-80%), whereas human muscle had more types I and IIa. Oxidative capacity of both felids (CS: 5-9 μmol/min/g ww and 3HAD: 1.4-2.6 μmol/min/g ww) was lower than humans, whereas the glycolytic capacity was elevated. LDH activity of caracal (346 ± 81) was higher than lion (227 ± 62 μmol/min/g ww), with human being the lowest (55 ± 17). CK and PHOS activities were also higher in caracal and lion compared to human, but PFK was lower in both felid species. The current data and past research are illustrated graphically showing a strong relationship between type II fibers and sprinting ability in various species. These data on caracal and lion muscles confirm their sprinting behavior.  相似文献   

3.
Young Wistar rats underwent dynamic (D) or static (S) exercise from the 5th to 35th day after birth. Histochemical and biochemical analysis were performed in the extensor digitorum longus (EDL) and the soleus muscle (SOL). Lactate dehydrogenase (LDH) (regulating anaerobic metabolism) and citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HAD) (both regulating aerobic metabolism) activities were determined spectrophotometrically. An increase of the fast oxidative-glycolytic (FOG) muscle fibres was found in the slow SOL muscle in both trained groups, i.e. by 10% in group D and by 7% in group S in comparison with the C group. The EDL muscle fibre distribution did not differ from those of control animals in respect to the slow oxidative (SO) fibre type. A higher percentage of FOG fibres by 19% was found in group D contrary to a decreased number of the fast glycolytic (FG) muscle fibres in this trained group. The greatest increase of CS (EDL 185%, SOL 176%) and HAD (EDL 83%, SOL 178%) activities were found in group D as compared with control group (C). Only small differences were observed in LDH activity. The values of characteristic enzyme activity ratios show that dynamic training resulted in an elevation of oxidative capacity of skeletal muscle, while the static load led preferentially along the glycolytic pathway. It may be concluded that an adaptive response to the training load during early postnatal development is different due to the type of exercise (dynamic or static) and/or the type of skeletal muscle (fast or slow).  相似文献   

4.
The effect of selective vs. nonselective beta-blockade on fast-twitch [extensor digitorum longus (EDL)] and slow-twitch [soleus (SOL)] muscle enzyme activities following endurance training were characterized. Citrate synthase (CS), lactate dehydrogenase (LDH), and beta-hydroxyacyl-CoA dehydrogenase (HAD) activities were compared in SOL and EDL muscles of trained (T), metoprolol-trained (MT), propranolol-trained (PT), and sedentary (C) rats. Following 8 wk of treadmill running (1 h/day, 5 days/wk at approximately 30 m/min), LDH activity was depressed approximately 20% (P less than 0.05) in both SOL and EDL in only the PT rats, indicating inhibition of beta 2-mediated anaerobic glycolysis. EDL CS activity was similarly elevated in all three trained groups compared with sedentary controls. In SOL muscle, however, a drug attenuation effect was observed so that CS activity was increased only in the T (P less than 0.01) and MT (P less than 0.05) groups. HAD enzyme activity was increased somewhat (P less than 0.10) in SOL muscle in only the T group, but more so (P less than 0.05) in EDL in all three trained groups. The above findings suggest a training-induced selectivity effect not only with respect to beta 1-vs. beta 1-beta 2-blockers, but also with respect to muscle fiber type.  相似文献   

5.
Nine bodybuilders performed heavy-resistance exercise activating the quadriceps femoris muscle. Intermittent 30-s exhaustive exercise bouts comprising 6-12 repetitions were interspersed with 60-s periods for 30 min. Venous blood samples were taken repeatedly during and after exercise for analyses of plasma free fatty acid (FFA) and glycerol concentration. Muscle biopsies were obtained from the vastus lateralis muscle before and after exercise and assayed for glycogen, glycerol-3-phosphate, lactate and triglyceride (TG) content. The activities of citrate synthase (CS), lactate dehydrogenase, hexokinase (HK), myokinase, creatine kinase and 3-hydroxyacyl-CoA dehydrogenase (HAD), were analysed. Histochemical staining procedures were used to assess fibre type composition, fibre area and capillary density. TG content before and after exercise averaged (SD) 23.9 (13.3) and 16.7 (6.4) mmol kg-1 dry wt. The basal triglyceride content varied sixfold among individuals and the higher the levels the greater was the change during exercise. The glycogen content decreased (P less than 0.001) from 690 (82) to 495 (95) mmol kg-1 dry wt. and lactate and glycerol-3-phosphate increased (P less than 0.001) to 79.5 (5.5) and 14.5 (7.3) mmol kg-1 dry wt., respectively, after exercise. The HK and HAD/CS content respectively correlated with glycogen or TG content at rest and with changes in these metabolites during exercise. FFA and glycerol concentrations increased slightly (P less than 0.001) during exercise. Lipolysis may, therefore, provide energy during heavy-resistance exercise of relatively short duration. Also, storage and utilization of intramuscular substrates appear to be influenced by the metabolic profile of muscle.  相似文献   

6.
The purpose of this study was to assess the relationship between muscle fiber type distribution and enzymatic characteristics in sedentary male and female subjects. Muscle biopsy samples from the vastus lateralis muscle of 38 females and 37 males were analyzed to determine the fiber type composition (I, IIa, and IIb), the fiber size, and maximal activities of enzyme markers of energy metabolic pathways. Significant correlations were found (p less than 0.05) between percent fiber type I area and hexokinase (r = -0.39), phosphofructokinase (r = -0.39), lactate dehydrogenase (r = -0.41), and oxoglutarate dehydrogenase (r = 0.33) activities, whereas such correlations with total phosphorylase (r = -0.02), malate dehydrogenase (r = 0.12), and 3-hydroxyacyl CoA dehydrogenase (r = 0.12) activities were not significant. The results of the present study also suggest the presence of a significant but low covariation of less than 30% between the fiber type distribution and muscle enzyme activities. They confirm the presence of an important metabolic heterogeneity independent of the muscle fiber type distribution in sedentary male and female subjects. Moreover, these results indicate that sedentary males exhibit a lower mean value of percent fiber type I and higher glycolytic enzyme activities than sedentary females.  相似文献   

7.
Aerobic and anaerobic thresholds determined by different methods in repeated exercise tests were correlated with cardiorespiratory variables and variables of muscle metabolic profile in 33 men aged 20-50 years. Aerobic threshold was determined from blood lactate, ventilation, and respiratory gas exchange by two methods (AerT1 and AerT2) and anaerobic threshold from venous lactate (AnTLa), from ventilation and gas exchange (AnTr) and by using the criterion of 4 mmol.1(-1) of venous lactate (AnT4mmol). In addition to ordinary correlative analyses, applications of LISREL models were used. The 8 explanatory variables chosen for the regression analyses were height, relative heart volume, relative diffusing capacity of the lung, muscle fiber composition, citrate synthase (CS) and succinate dehydrogenase activities, the lactate dehydrogenase--CS ratio, and age. They explained 58% of the variation in AerT1, 73.5% that of AerT2, 71% that of AnTr, 74.5% that of AnTLa, and 67.5% that of AnT4mmol.AerT and AnT alone explained 77% of the variation in each other. Both AerT and AnT were determined mainly by a muscle metabolic profile, with the CS activity of vastus lateralis as the strongest determinant. The factor 'submaximal endurance' which was measured with AerT and AnT seemed to be slightly more closely connected to 'muscle metabolic profile' than was 'maximal aerobic power' (= VO2max), but both also correlated strongly with each other (r = 0.92).  相似文献   

8.
Muscle biopsies from quadriceps femoris muscle of normal subjects and subjects with symptoms of congenital myopathy, aged 1-3 years, were examined for morphological and biochemical differences. Four patients showed clinical signs of Congenital Fibre Type Disproportion (CFTD) as described originally by Brooke (1973), while the other cases showed only signs of hypotonia and diffuse weakness as described by Clancy et al. (1980). No morphological differences between patients with different clinical signs were found in any biopsy sample from the quadriceps femoris muscle, as regards fibre size; type I fibres were always smaller than type II fibres. The difference in fibre size was more than 15% in all cases, and the variability coefficient of the larger type II fibres was less than 250. Nevertheless, as regards fibre occurrence, two patients showed more type I fibres than type II fibres, four patients showed more type II fibres than type I fibres and one patient had a marked type II fibre predominance. Enzyme activities assayed in the crude mitochondrial fraction showed no abnormalities between normal subjects and patients. An increase in the activity of lactate dehydrogenase in the crude extract was found in all cases.  相似文献   

9.
Tissue samples were obtained from the vastus lateralis muscle of elite olympic weight and power lifters (OL/PL, n = 6), bodybuilders (BB, n = 7), and sedentary men (n = 7). Enzyme activities of citrate synthase (CS), lactate dehydrogenase (LD), 3-OH-acyl-CoA-dehydrogenase (HAD), and myokinase (MK) were assayed on freeze-dried dissected pools of slow-twitch (ST) and fast-twitch (FT) fiber fragments by fluorometric means. Histochemical analyses were carried out to assess fiber type composition and fiber area. CS and HAD activities were lower (P less than 0.05), and LD and MK were higher (P less than 0.05) in FT than ST fibers in the entire subject pool (n = 20). CS of FT fibers and HAD of ST fibers were lower in athletes (P less than 0.05-0.01) compared with nonathletes, whereas LD of both fiber types was higher (P less than 0.05-0.001) in athletes. CS activity of ST fibers and MK activity of FT fibers were higher (P less than 0.05) in BB compared with OL/PL. FT and ST fiber area was greater (P less than 0.05) in athletes than in nonathletes. BB displayed greater (P less than 0.05) fiber size than OL/PL. FT/ST area was greater (P less than 0.05) in OL/PL than BB. It is suggested that long-term heavy-resistance training results in specific metabolic adaptations of FT and ST fiber types. These changes appear to be influenced by the type of resistance training.  相似文献   

10.
The purpose of this study was to describe the relationships between 16 physiological, biochemical, and morphological variables presumed to relate to the oxidative capacity in quadriceps muscles or muscle parts in Standardbred horses. The variables included O2 delivery (blood flow) and mean capillary transit time (MTT) during treadmill locomotion at whole animal maximal O2 consumption (VO2max, 134 +/- 2 ml.min-1 x kg-1), capillary density and capillary-to-fiber ratio, myoglobin concentration, oxidative enzyme activities, glycolytic enzyme activities, fiber type populations, and fiber size. These components of muscle metabolic capacity were found to be interrelated to varying degrees using correlation matrix analysis, with lactate dehydrogenase activity showing the most significant correlations (n = 14) with other variables. Most of the "oxidative" variables occurred in the highest quantities in the deepest muscle of the group (vastus intermedius) and in the deepest parts of the other quadriceps muscles where the highest proportions of type I fibers were localized. The highest blood flow measured with microspheres in the muscle group during exercise was in vastus intermedius muscle (145 ml.min-1 x 100 g-1), and the lowest was in the superficial part of rectus femoris muscle (32 ml.min-1 x 100 g-1). Average muscle blood flow during exercise at whole animal VO2max was 116 ml.min-1 x 100 g-1. Because skeletal muscle comprised 43% of total body mass (453 +/- 34 kg), total muscle blood flow was estimated at 226 l/min, which was approximately 78% of total cardiac output (288 l/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This study was designed to characterize cardiac changes in myosin heavy chain (MHC)-beta, capacity for oxidative metabolism and muscle mass in hearts of rats born and raised at simulated altitudes (2200 m or 4000 m) compared to age-matched sea level controls. On the basis of electrophoretic analyses, we found that the hypoxia-induced ventricular hypertrophy produces a significant increase in MHC-beta in both ventricles. Furthermore, we observed an exponential relationship between the mass of right ventricular muscle and percentages in the expression of MHC-beta (r=0.928, P<0.001). We also observed the reduction in the citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in both hypertrophied ventricles (P<0.001). As a consequence, there were negative correlations between the percentage expression of MHC-beta and the CS or HAD activities (P<0.001). In contrast, there were no significant correlations between the relative expressions of MHC-beta and either CS or HAD enzymatic activities in both ventricles after adjusting for the relative wet mass. In conclusion, the observed increases in MHC-beta may be a compensation to augment efficiency if muscles contract in hypertrophied hearts where mitochondria fail to respond to increases in tissue mass. These findings suggest that the increased relative expression of MHC-beta is a compensation to sustain cardiac contractile efficiency in response to impaired oxidative metabolism in the hypoxia-induced hypertrophied ventricles of rats.  相似文献   

12.
The purpose of the study was to estimate the genetic effect for skeletal muscle characteristics using pairs of nontwin brothers (n = 32), dizygotic (DZ) twins (n = 26), and monozygotic (MZ) twins (n = 35). They were submitted to a needle biopsy of the vastus lateralis for the determination of fiber type distribution (I, IIa, IIb) and the following enzymes were assayed for maximal activity: creatine kinase, hexokinase, phosphofructokinase (PFK), lactate dehydrogenase, malate dehydrogenase, 3-hydroxyacyl CoA dehydrogenase, and oxoglutarate dehydrogenase (OGDH). For the percentage of type I fibers, intraclass correlations were 0.33 (p less than 0.05), 0.52 (p less than 0.01), and 0.55 (p less than 0.01) in brothers and DZ and MZ twins, respectively. MZ twins exhibited significant within-pair resemblance for all enzyme activities (0.30 less than or equal to r less than or equal to 0.68). In spite of these correlations, genetic analyses performed with the twin data alone indicated that there was no significant genetic effect for muscle fiber type I, IIa, and IIb distribution and fiber areas. Although there were significant correlations in MZ twins for all muscle enzyme activities, the often nonsignificant intraclass coefficients found in brothers and DZ twins suggest that variations in enzyme activities are highly related to common environmental conditions and nongenetic factors. However, genetic factors appear to be involved in the variation of regulatory enzymes of the glycolytic (PFK) and citric acid cycle (OGDH) pathways and in the variation of the oxidative to glycolytic activity ratio (PFK/OGDH ratio). Data show that these genetic effects reach only about 25-50% of the total phenotypic variation when data are adjusted for age and sex differences.  相似文献   

13.
A combined histochemical, biochemical and electrophoretic study with respect to the enzymes succnic dehydrogenase(SDH), myofibrillar adenosine triphosphatase (m-ATPase), lactate dehydrogenase (LDH) isozymes and myosin light chains was carried out to investigate the response of rat gastrocnemius muscle (medial head). Twelve weeks after thyroidectomy, the results indicated a shift from fast to slow type pattern of LDH isozymes, fibre type transformation from Type II to Type I and a decrease in SDH and m-ATPase activity. The results suggest, possible thyroidal involvement in determining the phenotypic properties of skeletal muscle.  相似文献   

14.
The purpose of this study was to investigate alterations in structural and functional properties in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats after 1, 2, and 5 wk of tail suspension. Maximal O2 uptake was 19% lower after 5 wk suspension. Loss of muscle mass was greater in SOL (63%) than in EDL (22%) muscle. A reduction of type I distribution was accompanied by an increase of intermediate fiber subgroups (int I in SOL, int II in EDL). The cross-sectional area of all three fiber types was reduced by hypokinesia. The decrease in capillaries per fiber in SOL was greater than the decrease in citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities after 5 wk. No alteration in lactate dehydrogenase activity was noted. In EDL, no changes in fiber area, capillarization, and enzymatic activities occurred. Energy charge remained unchanged (0.91) whatever the muscle. These results suggest that type I fibers showed an earlier and greater susceptibility than type II fibers to suspension which is also accompanied by a decreased aerobic capacity.  相似文献   

15.
Summary Three neck muscles in Swedish reindeer bucks have been studied before and during the rutting season. These were M. splenius, M. sternocephalicus and M. brachiocephalicus. For comparison, M. longissimus dorsi was chosen.Fibre composition and fibre size were studied in the four muscles as also was the metabolic potential of three enzymes, representing respiratory chain (cytochrome oxidase), -oxidation of fatty acids (3-hydroxyacyl-CoA dehydrogenase) and anaerobic glycolysis (lactate dehydrogenase).The extreme increase in size of certain muscles in the neck in connection with the rutting season (e.g. sternocephalicus, which increases from 250 g to 1,500 g) was to a great extent due to an increase in fibre size. In splenius, all three fibre types studied increased (I, IIA, IIB); in brachiocephalicus, mainly IIA and IIB; and in sternocephalicus, only the IIB. No corresponding fibre increase could be found in longissimus dorsi. In splenius and sternocephalicus from bucks older than 54 months, 60–70% of the fibres were of type I, and in brachiocephalicus, only about 40%.In all muscles but one, oxidative capacity (cytochrome oxidase) and -oxidation of fatty acids (3-hydroxyacyl-CoA dehydrogenase) decreased significantly during the rutting season. This indicates that purposes other than the enhancement of energy production by fatty acid oxidation must account for the enlargement of the neck muscles.Abbreviations Cytox cytochrome oxidase - HAD 3-hydroxyacyl-CoA dehydrogenase - LDH lactate dehydrogenase  相似文献   

16.
Fibers in cross sections of human and rat muscle were typed by using histochemical ATPase stains, and the results were compared with those of quantitative enzyme assays of fragments of the same fibers dissected from serial freeze-dried sections. Two enzymes previously used to assess the metabolic type were measured in each case: lactate dehydrogenase and either adenylokinase (human fibers) or malate dehydrogenase (rat fibers). With human fibers there was essentially complete agreement between ATPase staining and the metabolic enzyme assays in distinguishing types I and II fibers. The agreement was less consistent with regard to type IIA and IIB fibers. A number of ATPase type IIC fibers were identified in one human muscle, and were found to fall between ATPase types I and IIA on the basis of metabolic enzyme assay results. Rat-fiber ATPase types I, IIA, and IIB from the plantaris muscle were rather well segregated on a two-dimensional lactate dehydrogenase-malate dehydrogenase grid. In the rat soleus muscle, ATPase types I and IIA fibers were shifted to lower lactate dehydrogenase levels, with IIC fibers interposed between them.  相似文献   

17.
The effect of dynamic exercise on the NADH content of human type I (slow-twitch) and II (fast-twitch) muscle fibres was investigated. Muscle biopsy samples were obtained from the quadriceps femoris of seven healthy subjects at rest and after bicycle exercise at 40, 75 and 100% of the maximal oxygen uptake [VO2(max.)]. At rest and after exercise at 100% VO2(max.), muscle NADH content was significantly higher (P less than 0.05) in type I than in type II fibres. After exercise at 40% VO2(max.), muscle NADH decreased in type I fibres (P less than 0.01), but was not significantly changed in type II fibres. After exercise at 75 and 100% VO2(max.), muscle NADH increased above the value at rest in both type I and II fibres (P less than 0.05). Muscle lactate was unchanged at 40% VO2(max.), but increased 20- and 60-fold after exercise at 75 and 100% VO2(max.) respectively. The finding that NADH decreased only in type I fibres at 40% VO2(max.) supports the idea that type I is the fibre type predominantly recruited during low-intensity exercise. The increase of NADH in both fibre types after exercise at 75% and 100% VO2(max.) suggests that the availability of oxygen relative to the demand is decreased in both fibre types at high exercise intensities.  相似文献   

18.
Total creatine kinase (CK), creatine kinase MB (CK-MB) and citrate synthase (CS) were determined in isolated and pooled type I and type II skeletal muscle fibres. Determinations were made on biopsies from 3 sedentary men, 3 junior cyclists and 2 elite cyclists. CS and CK-MB activities were higher in the trained groups in both fibre types. The total CK activity was not related to training status, although it was lower in type I fibres than in type II fibres (p less than 0.05). The reverse relation was observed for CS and CK-MB activities (p less than 0.01). The ratio of type I/type II for CS was not related to training status, while the corresponding ratio for CK-MB increased with a greater degree of endurance training. For a given increase in CS activity, the increase in CK-MB activity was greater in type I fibres than in type II fibres (p less than 0.01). Thus, with endurance training there seems to be a specific adaptation for CK-MB, particularly in type I fibres.  相似文献   

19.
A canine gracilis model was used to study muscle energy metabolism and enzyme activities after free vascularized muscle transfer. Fifteen male mongrel dogs underwent orthotopic, free transfer of the left gracilis with microneurovascular anastomosis. After a minimum of 10 months' recovery, muscle biopsy specimens were obtained from the transfers and the contralateral controls and analyzed for relative fiber type areas and maximum activities of phosphorylase, hexokinase, phosphofructokinase, glycerol-3-phosphate dehydrogenase (GPDH), pyruvate kinase, lactate dehydrogenase, citrate synthase, succinate dehydrogenase, 3-hydroxyacyl coenzyme A dehydrogenase (HAD), and creatine phosphokinase. Biopsy specimens obtained before and after a 10 minute, 20-Hz contraction were analyzed for glucose, glycogen, glycolytic intermediates, phosphocreatine, total creatine, and adenine nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, inosine monophosphate, and inosine). There was no significant transfer versus control difference in type I relative fiber area (45 +/- 4 percent versus 44 +/- 3 percent). Total creatine was significantly reduced in the transferred muscles relative to control (83.1 +/- 3.0 mmol/kg versus 100.6 +/- 5.1 mmol/kg dry weight). Maximal activities of phosphorylase, pyruvate kinase, lactate dehydrogenase, citrate synthase, succinate dehydrogenase, HAD, and creatine phosphokinase were diminished in transfers relative to controls, although hexokinase activity was significantly higher in the freely transferred gracilis muscles. During the 20-Hz contraction, muscle transfers produced less force initially, although the force/time integral over the 10-minute stimulation was similar in transfers (277 +/- 25 N/g/second) and controls (272 +/- 24 N/g/second). The contraction was associated with significant glvcogen use and lactate accumulation in both transfers and controls, although this was less pronounced for the transfers. Glycolytic flux appeared muted in the transfers relative to controls. Significant, similar high-energy phosphagen reductions and inosine monophosphate accumulation were noted during the contraction in both groups. Contractile activity is associated with the expected pattern of muscle metabolite changes following free vascularized transfer, indicating the components of cellular energy metabolism are not qualitatively altered after microneurovascular muscle transfer. In contrast, quantitative differences suggest that free vascularized muscle transfer can be associated with a muscle enzyme profile consistent with deconditioning and the presence of denervated muscles fibers in the absence of fiber type profile changes.  相似文献   

20.
A comparison of the influence of simple and complex carbohydrate (CHO) consumption on adipose tissue- and skeletal muscle-lipoprotein lipase activity (AT-LPLA, SM-LPLA) was examined. Twenty male marathon runners were divided into two equal dietary groups: simple-CHO and complex-CHO. Half of the subjects in each group consumed either a low-CHO (15% energy [E] intake), or a mixed diet (50% CHO) for 3 days. Immediately following this dietary period, the subjects consumed a CHO-rich diet (70% E intake) predominant in simple-CHO or in complex-CHO for an additional 3 days. Thereafter, all subjects returned to a normal mixed diet. Skeletal muscle biopsies, adipose tissue aspirations, and venous blood samples were obtained prior to dietary manipulation (PRE), upon completion of the 6 day diet (POST I), and 2 weeks after returning to a normal diet (POST II). The samples were analysed for AT-LPLA, SM-LPLA, serum insulin, and free fatty acids (FFA), and blood glucose, and lactate. SM-LPLA fell 71% from PRE values of 0.39 +/- 0.30 mu mol.g-1.h-1 to POST I values of 0.11 +/- 0.09 mu mol.g-1.h-1 (means +/- SD) (p less than 0.05), after a complex-CHO diet. However, the simple-CHO diet did not alter SM-LPLA. AT-LPLA similarly decreased (p less than 0.05) after the complex-CHO diet, and no significant decrease was noted after the simple-CHO diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号