首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cubic phase of monoolein has successfully been used for crystallization of a number of membrane proteins. However, the mechanism of protein crystallization in the cubic phase is still unknown. It was hypothesized, that crystallization occurs at locally formed patches of bilayers. To get insight into the stability of the cubic phase, we investigated the effect of different phospholipids and a model transmembrane peptide on the lipid organization in mixed monoolein systems. Deuterium-labeled 1-oleoyl-rac-[(2)H(5)]-glycerol was used as a selective probe for (2)H NMR. The phase behavior of the phospholipids was followed by (31)P NMR. Upon incorporation of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, or phosphatidic acid, the cubic phase of monoolein transformed into the L(alpha) or H(II) phase depending on the phase preference of the phospholipid and its concentration. The ability of phospholipids to destabilize the cubic phase was found to be dependent on the phospholipid packing properties. Electrostatic repulsion facilitated the cubic-to-L(alpha) transition. Incorporation of the transmembrane peptide KALP31 induced formation of the L(alpha) phase with tightly packed lipid molecules. In all cases when phase separation occurs, monoolein and phospholipid participate in both phases. The implications of these findings for protein crystallization are discussed.  相似文献   

2.
This paper is part in a series of papers, investigating the influence of carbohydrate headgroups on the mesogenic properties of glycolipids. While previous papers focussed on the synthesis and mesogenic properties of the pure compounds, we will discuss here our results obtained with binary mixtures. Mixtures of compounds, one forming a lamellar phase and the other one a columnar phase in their pure state, displayed always an induced cubic phase. The stability of this induced cubic phase depends significantly on the structure of the carbohydrate headgroup of both components. Thus it was possible to derive structure–property relationships by comparison of the phase diagrams that have been obtained, if the carbohydrate headgroup of one component was changed systematically. We observed an interesting effect of galactose headgroups which might be of great biological importance. Furthermore, the observed kind of kinetic of the SA→cub transition might also be of great biological relevance.  相似文献   

3.
Using X-ray diffraction measurements and polarizing microscopy, the solubilization of ubiquinone-10 (UQ10) was investigated in the lamellar and reversed bicontinuous cubic phases of aqueous monoolein (MO, 86 wt% of monooleoylglycerol). At 25 degrees C and UQ10 content below 0.5 wt%, a partial phase diagram of the MO/UQ10/H2O system indicated the same sequence of hydration-induced phases as found in the MO/H2O system. This low amount of coenzyme had no effect on the MO bilayer thickness and swelling behavior of phases, but it promoted thermotropic Q230-->HII phase transition. We suggested that the effect was determined by the UQ10 partitioning into the HII phase regions where the MO chains must be stressed upon the phase transition. At UQ10 contents above 0.5 wt%, a solid 'UQ10-rich' phase appeared inside the initially homogeneous phases within a few days. It was proposed that this process was driven by the coenzyme lateral diffusion in the MO bilayer.  相似文献   

4.
We have investigated the effects of anionic dioleoylphosphatidic acid (DOPA) on the structure and phase behavior of dipalmitoleoylphosphatidylethanolamine (DPOPE) membranes by small-angle X-ray scattering. The results of X-ray diffraction experiments indicate that an L(alpha) to H(II) phase transition in DPOPE membranes occurred at 2.5 mol% DOPA, and above 4.0 mol% they were completely in the H(II) phase. And in the presence of 0.5 M KCl, the critical concentration of DOPA was decreased to 0.6 mol%. These results show that low concentrations of DOPA stabilize the H(II) phase rather than the L(alpha) phase in DPOPE membranes. The absolute spontaneous curvature of DPOPE membrane was gradually decreased with an increase in DOPA concentrations. On the basis of these results, the H(II) phase stability in DPOPE membranes due to low DOPA concentrations is discussed by the spontaneous curvature of monolayer membrane, the packing energy of alkyl chains of the membrane and lipid packing parameter.  相似文献   

5.
The polymorphic phase behaviour of dilinoleoylphosphatidyethanolamine (DLPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) is investigated by freeze-fracture electron microscopy, X-ray diffraction and 31P-NMR. The structures at 5% or less POPC are predominantly inverted hexagonal (HII), whereas at 15% or more POPC, the structure is mostly bilayer (L), interrupted by defects (lipidic particles). A cubic phase structure is observed in the transition range between H and L phases; the cubic arrangement deteriorates at higher temperatures into an amorphous aggregate of spherical units. Both cubic and amorphous structures contribute to the isotropic 31P resonance, with no preference for PC or PE partitioning in the isotropic motion as observed by high resolution NMR. The existence of the cubic phase seems to depend cirtically on the homogeneity and the degree unsaturation of the phospholipids.  相似文献   

6.
The in meso method for membrane protein crystallization uses a lipidic cubic phase as the hosting medium. The cubic phase provides a lipid bilayer into which the protein presumably reconstitutes and from which protein crystals nucleate and grow. The solutions used to spontaneously form the protein-enriched cubic phase often contain significant amounts of detergents that were employed initially to purify and to solubilize the membrane protein. By virtue of their surface activity, detergents have the potential to impact on the phase properties of the in meso system and, by extension, the outcome of the crystallization process. The purpose of this study was to quantify the effects that a popular series of nonionic detergents, the n-alkyl-beta-D-glucopyranosides, have on the phase behavior of hydrated monoolein, the lipid upon which the in meso method is based. Phase identity and phase microstructure were characterized by small-angle x-ray diffraction on samples prepared to mimic in meso crystallization conditions. Measurements were made in the 0-40 degrees C range. Samples prepared in the cooling direction allow for the expression of metastability, a feature of liquid crystalline phases that might be exploited in low-temperature crystallization. The results show that the cubic phase is relatively insensitive to small amounts of alkyl glucosides. However, at higher levels the detergents trigger a transition to the lamellar phase in a temperature- and salt concentration-dependent manner. These effects have important implications for in meso crystallization. A diffraction-based method for assaying detergents is presented.  相似文献   

7.
Solid-liquid phase behavior of binary fatty acid mixtures was investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) for the mixture composed of oleic acid (OA) and stearic acid (SA) and that composed of OA and behenic acid (BA). The DSC results provided a monotectic type T-X phase diagram for these mixtures, from which it was suggested that the two fatty acid species are completely immiscible in a solid phase regardless of the two polymorphs of OA, i.e., alpha-form or gamma-form. The solid phase immiscibility was confirmed by the FT-IR observation that the spectra obtained for the mixtures correspond to the superposition of the two spectra for respective components. Thermodynamic analysis of liquidus line demonstrated that OA and SA form an ideal mixture in a liquid phase, whereas the mixing of OA and BA in a liquid phase is slightly non-ideal.  相似文献   

8.
Based on curvature energy considerations, nonbilayer phase-forming phospholipids in excess water should form stable bicontinuous inverted cubic (QII) phases at temperatures between the lamellar (Lα) and inverted hexagonal (HII) phase regions. However, the phosphatidylethanolamines (PEs), which are a common class of biomembrane phospholipids, typically display direct Lα/HII phase transitions and may form intermediate QII phases only after the temperature is cycled repeatedly across the Lα/HII phase transition temperature, TH, or when the HII phases are cooled from T > TH. This raises the question of whether models of inverted phase stability, which are based on curvature energy alone, accurately predict the relative free energy of these phases. Here we demonstrate the important role of a noncurvature energy contribution, the unbinding energy of the Lα phase bilayers, gu, that serves to stabilize the Lα phase relative to the nonlamellar phases. The planar Lα phase bilayers must separate for a QII phase to form and it turns out that the work of their unbinding can be larger than the curvature energy reduction on formation of QII phase from Lα at temperatures near the Lα/QII transition temperature (TQ). Using gu and elastic constant values typical of unsaturated PEs, we show that gu is sufficient to make TQ > TH for the latter lipids. Such systems would display direct Lα → HII transitions, and a QII phase might only form as a metastable phase upon cooling of the HII phase. The gu values for methylated PEs and PE/phosphatidylcholine mixtures are significantly smaller than those for PEs and increase TQ by only a few degrees, consistent with observations of these systems. This influence of gu also rationalizes the effect of some aqueous solutes to increase the rate of QII formation during temperature cycling of lipid dispersions. Finally, the results are relevant to protocols for determining the Gaussian curvature modulus, which substantially affects the energy of intermediates in membrane fusion and fission. Recently, two such methods were proposed based on measuring TQ and on measuring QII phase unit cell dimensions, respectively. In view of the effect of gu on TQ that we describe here, the latter method, which does not depend on the value of gu, is preferable.  相似文献   

9.
The stabilizing role of sugars on dehydrated membranes is well established. The formation of a glassy matrix and the direct interaction between the sugars and the lipids are some of the mechanisms proposed to be involved in this stabilizing effect. Phospholipidic systems have been studied extensively as models for biological membranes and also due to the practical applications of liposomes as vehicles for drug delivery. In this work, we evaluate the effect of sugar-phosphate mixtures on the transition temperature of dehydrated 1,2-dipalmitoylphosphatidylcholine, and also examine some physical characteristics of these mixtures, such as the glass transition temperature and water sorption properties. The addition of phosphate salts to sugar systems has several interesting features that merit its consideration in formulations to protect dehydrated labile biomaterials. In particular, sucrose-phosphate mixtures provide an interesting alternative to pure saccharide formulations due to their high glass transition temperatures and their increased ability to maintain a low melting transition temperature in the presence of small amounts of water.  相似文献   

10.
Intestinal fatty acid binding protein (IFABP) is thought to participate in the intracellular transport of fatty acids (FAs). Fatty acid transfer from IFABP to phospholipid membranes is proposed to occur during protein-membrane collisional interactions. In this study, we analyzed the participation of electrostatic and hydrophobic interactions in the collisional mechanism of FA transfer from IFABP to membranes. Using a fluorescence resonance energy transfer assay, we examined the rate and mechanism of transfer of anthroyloxy-fatty acid analogs a) from IFABP to phospholipid membranes of different composition; b) from chemically modified IFABPs, in which the acetylation of surface lysine residues eliminated positive surface charges; and c) as a function of ionic strength. The results show clearly that negative charges on the membrane surface and positive charges on the protein surface are important for establishing the "collisional complex", during which fatty acid transfer occurs. In addition, changes in the hydrophobicity of the protein surface, as well as the hydrophobic volume of the acceptor vesicles, also influenced the rate of fatty acid transfer. Thus, ionic interactions between IFABP and membranes appear to play a primary role in the process of fatty acid transfer to membranes, and hydrophobic interactions can also modulate the rates of ligand transfer.  相似文献   

11.
The polymorphic phase behaviour of dilinoleoylphosphatidyethanolamine (DLPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) is investigated by freeze-fracture electron microscopy, X-ray diffraction and 31P-NMR. The structures at 5% or less POPC are predominantly inverted hexagonal (HII), whereas at 15% or more POPC, the structure is mostly bilayer (L), interrupted by defects (lipidic particles). A cubic phase structure is observed in the transition range between H and L phases; the cubic arrangement deteriorates at higher temperatures into an amorphous aggregate of spherical units. Both cubic and amorphous structures contribute to the isotropic 31P resonance, with no preference for PC or PE partitioning in the isotropic motion as observed by high resolution NMR. The existence of the cubic phase seems to depend critially on the homogeneity and the degree unsaturation of the phospholipids.  相似文献   

12.
We report the observation of an inverted cubic phase in aqueous dispersions of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) by small-angle X-ray diffraction. DOPE is a paradigm in the study of nonlamellar phases in biological systems: it exhibits a well-known phase transition from the lamellar (L alpha) to the inverted hexagonal phase (HII) as the temperature is raised. The transition is observed to occur rapidly when a DOPE dispersion is heated from 2 degrees C, where the L alpha phase is stable, to 15 degrees C, where the HII phase is stable. We report on the induction of a crystallographically well-defined cubic lattice that is slowly formed when the lipid dispersion is rapidly cycled between -5 and 15 degrees C hundreds of times. Once formed, the cubic lattice is stable at 4 degrees C for several weeks and exhibits the same remarkable metastability that characterizes other cubic phases in lipid-water systems. X-ray diffraction indicates that the cubic lattice is most consistent with either the Pn3m or Pn3 space group. Tests of lipid purity after induction of the cubic indicate the lipid is at least 98% pure. The cubic lattice can be destroyed and the system reset by cycling the specimen several times between -30 and 2 degrees C. The kinetics of the formation of the cubic are dependent on the thermal history of the sample, overall water concentration, and the extreme temperatures of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Electrostatic interactions are believed to play an important role in stabilizing the native structure of proteins. We have quantified the contribution to stability of an interaction between two oppositely charged side-chains on the surface of barnase. Using site-directed mutagenesis, glutamate 28 and lysine 32 were introduced onto the solvent-accessible side of the second alpha-helix in barnase. These two residues are separated by one turn of the helix, and so are ideally situated for their opposite charges to interact. Double mutant cycle analysis reveals that the interaction between Glu28 and Lys32 contributes only approximately 0.2 kcal/mol to stability of the protein. All other interactions between exposed charged side-chains in barnase examined so far also contribute little to stability. We explain this low value by their location on the surface, rather than in the interior, of the protein.  相似文献   

15.
NAD+-dependent formate dehydrogenase (FDH-EC 1.2.1.2) is an important enzyme to regenerate valuable NADH required by NAD+-dependent oxidoreductases in enzyme catalysis. The limitation in the thermostability of FDH enzyme is a crucial problem for development of biotechnological and industrial processes, despite of its advantages. In this study, to investigate the contribution of surface electrostatic interaction to the thermostability of FDH from Candida methylica (cmFDH) N187E, H13E, Q105R, N300E, N147R N300E/N147R, N187E/Q105R, N187E/N147R,Y160R, Y302R, Y160E and Y302E mutants were designed using a homology model of cmFDH based on Candida boidinii (cb) by considering electrostatic interactions on the protein surface. The effects of site-specific engineering on the stability of this molecule was analyzed according to minimal model of folding and assembly reaction and deduced equilibrium properties of the native system with respect to its thermal and denaturant sensitivities. It was observed that mutations did not change the unfolding pattern of native cmFDH and increased numbers of electrostatic interactions can cause either stabilizing or destabilizing effect on the thermostability of this protein. The thermodynamic and kinetic results suggested that except relatively improved mutants, three out of the nine single mutations increased the melting temperature of cmFDH enzyme.  相似文献   

16.
Trehalose is known to protect some organisms from various stresses due to drought and high temperature. To explore the molecular mechanism of the protective function, the mesomorphic properties of the monoolein-water system, dried in the presence of trehalose, were studied by X-ray diffraction. While, in pure water, two bicontinuous inverse cubic structures (the Pn3m and Ia3d phases) and a lamellar Lα phase exist as a function of concentration, only the Pn3m cubic phase has been detected in concentrated trehalose solutions or in trehalose glasses, even under extremely dry conditions. Depending on the sugar concentration, or after glass dehydration, the Pn3m cubic unit cell decreases to very low values, much below the smaller one observed in pure water. However, as no phase transitions occur, a simple osmotic mechanism can be excluded. An additional stabilization of the lipid phase, arising from interfacial free energy changes due to trehalose-water-lipid direct interactions, and large enough to affect the energetic balance between the Pn3m and the Ia3d cubic phases, evidently occurs. Moreover, no differences in the Pn3m cubic structure were observed when the sugar platelets convert to the glassy state; no apparent structural modifications that can be related to mechanical pressure exerted on the lipid phase have been detected. Received: 5 October 1998 / Accepted: 13 November 1998  相似文献   

17.
Protein engineering is a promising tool to obtain stable proteins. Comparison between homologous thermophilic and mesophilic enzymes from a given structural family can reveal structural features responsible for the enhanced stability of thermophilic proteins. Structures from pig heart cytosolic and Thermus flavus malate dehydrogenases (cMDH, Tf MDH), two proteins showing a 55% sequence homology, were compared with the aim of increasing cMDH stability using features from the Thermus flavus enzyme. Three potential salt bridges from Tf MDH were selected on the basis of their location in the protein (surface R176-D200, inter-subunit E57-K168 and intrasubunit R149-E275) and implemented on cMDH using site-directed mutagenesis. Mutants containing E275 were not produced in any detectable amount, which shows that the energy penalty of introducing a charge imbalance in a region that was not exposed to solvent was too unfavourable to allow proper folding of the protein. The salt bridge R149-E275, if formed, would not enhance stability enough to overcome this effect. The remaining mutants were expressed and active and no differences from wild-type other than stability were found. Of the mutants assayed, Q57E/L168K led to a stability increase of 0.4 kcal/mol, as determined by either guanidinium chloride denaturalization or thermal inactivation experiments. This results in a 15 degrees C shift in the optimal temperature, thus confirming that the inter-subunit salt bridge initially present in the T.flavus enzyme was formed in the cMDH structure and that the extra energy obtained is transformed into an increase in protein stability. These results indicate that the use of structural features of thermophilic enzymes, revealed by a detailed comparison of three-dimensional structures, is a valid strategy to improve the stability of mesophilic malate dehydrogenases.  相似文献   

18.
The chloroplast galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were isolated from wheat leaves. The phase equilibria of galactolipid-water systems with MGDG / DGDG molar ratios equal to 0:1, 1:2, 1.2:1, 2:1 and 1:0 were investigated, using nuclear magnetic resonance (NMR) methods. MGDG and DGDG form reversed hexagonal and lamellar phases, respectively, at temperatures between 10 and 40°C at all water contents studied (up to about 14 mol 2H2O per mol lipid). The galactolipid mixtures show a complex phase forming reversed hexagonal, lamellar and reversed cubic phases, depending on water content and temperature. It was found that the water hydration is similar for the lamellar and hexagonal phases formed by DGDG and MGDG, respectively. The non-lamellar phase areas increase with increasing content of MGDG. Small-angle X-ray measurements show that the cubic phase belongs to the Ia3d space group. From translational diffusion studies by NMR it is concluded that the structure of this cubic phase is bicontinuous.  相似文献   

19.
Hydration of DPPC at low temperatures yielded two new phases, a non-lamellar C1 phase and a lamellar C2 phase, as well as the normal gel phase, depending upon the initial physical state of the dry lipid. From the results of wide-angle diffraction and calorimetry the C2 phase appears very similar to the normal C phase, but the D spacing is considerably larger, suggesting that the C2 phase is a C phase with untilted chains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号