首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THE SEARCH FOR LIFE ON MARS   总被引:2,自引:0,他引:2  
Mars appears to have no life on its surface today. However, the presence of fluvial features provides evidence that liquid water was once present on the martian surface. By analogy with Earth, life may have originated on Mars early in its history, possibly during the end of the late heavy bombardment. Analysis of the one meteorite from Mars which dates to this early time appears to contain evidence of this early environment and possibly life. As the climate cooled and liquid water became unavailable, life would have eventually died out. The cold deserts of Antarctica provide a glimpse of what martian ecosystems might have been like as conditions worsened. The search for fossil evidence of past life on Mars may provide the first direct indication of life beyond Earth.  相似文献   

2.
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.  相似文献   

3.
Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.  相似文献   

4.
G V Levin  P A Straat 《Bio Systems》1977,9(2-3):165-174
Viking radiorespirometry ("Labeled Release" [LR]) experiments conducted on surface material obtained at two sites on Mars have produced results which on Earth would clearly establish the presence of microbial activity in the soil. However, two factors on Mars keep the question open. First, the intense UV flux striking Mars has given rise to several theories postulating the production of highly oxidative compounds. Such compounds might be responsible for the observed results. Second, the molecular analysis experiment has not found organic matter in the Mars surface material, and therefore, does not support the presence of roganisms. However, sensitivity limitations of the organic analysis instrument could permit as many as one million terrestrial type bacteria to go undetected. Terrestrial experiments with UV irradiation of Mars Analog Soil did not produce Mars type LR results. Gamma irradiation of silica gel did produce positive results, but not mimicking those on Mars. The life question remains open.  相似文献   

5.
Life on Mars     
Abstract

There is evidence that at one time Mars had liquid water habitats on its surface. Studies of microbial communities in cold and dry environments on the Earth provide a basis for discussion of the possible nature of any life that may have existed on Mars during that time. Of particular relevance are the cyanobacterial communities found in hypolithic and endolithic habitats in deserts. Microbial mats found under ice-covered lakes provide an additional possible Martian system. Results obtained from these field studies can be used to guide the search for fossil evidence of life on Mars. It is possible that in the future life will be reintroduced on Mars in an effort to restore that planet to habitable conditions. In this case the organisms under study as exemplars of past life may provide the hardy stock of pioneering Martian organisms. These first organisms must be followed by plants. The feasibility of reviving Mars will depend on the ability of plants to grow in an abundance of CO2 but at extremely low pressures, temperatures, O2, and N2 levels. On Mars, biology was, and is, destiny.  相似文献   

6.
Evidence of past liquid water on the surface of Mars suggests that this world once had habitable conditions and leads to the question of life. If there was life on Mars, it would be interesting to determine if it represented a separate origin from life on Earth. To determine the biochemistry and genetics of life on Mars requires that we have access to an organism or the biological remains of one—possibly preserved in ancient permafrost. A way to determine if organic material found on Mars represents the remains of an alien biological system could be based on the observation that biological systems select certain organic molecules over others that are chemically similar (e.g., chirality in amino acids).  相似文献   

7.
The problems of how warm and wet Mars once was and when climate transitions may have occurred are not well understood. Mars may have had an early environment similar to Earth's that was conductive to the ermergence of life. In addition, increasing geologic evidence indicates that water, upon which terrestrial life depends, has been present on Mars throughout its history. This evidence suggests that life could have developed not only on early Mars but also over longer periods of time in longer lasting, more clement local environments. Indications of past or present life most likely would be found in areas where liquid water existed in sufficient quantities to provide for the needs of biological systems. We suggest that paleolakes may have provided such environments. Unlike the case on Earth, this record of the origin and evolution of life has probably not been erased by extensive deformation of the Martian surface. Our work has identified eleven prospective areas where large lacustrine basins may once have existed. These areas are important for future biological, geological, and climatological investigations.Presented at the International Symposium on The Biological Exploration of Mars, October 26–27, 1990, Tallahassee, FL, U.S.A.  相似文献   

8.
Errata corrige     
Abstract

Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as “absolute extreme.” Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.  相似文献   

9.
When you are at the bottom of the career ladder in the life sciences it's often hard to see how high you can go or where it might lead you. In Europe, the academic ladder is missing at least one essential rung, and young researchers need better training to step out in new directions.  相似文献   

10.
For almost 50 years the planet Mars has been investigated using spacecraft. The search for evidence of life on this planet is among the main tasks of these investigations. This paper discusses some results of the expeditions to Mars and the targets of the future exploration of Europa, one of the four Galileo moons of Jupiter. The search for possible evidence of life on Europa is also a part of new projects. Physical conditions on Mars and Europa are comparable to those on the Earth.  相似文献   

11.
Salt flats (sabkha) are a recognized habitat for microbial life in desert environments and as analogs of habitats for possible life on Mars. Here we report on the physical setting and microbiology of interdune sabkhas among the large dunes in the Rub'' al Khali (the Empty Quarter) in Liwa Oasis, United Arab Emirates. The salt flats, composed of gypsum and halite, are moistened by relatively fresh ground water. The result is a salinity gradient that is inverted compared to most salt flat communities with the hypersaline layer at the top and freshwater layers below. We describe and characterize a rich photosynthetically-based microbial ecosystem that is protected from the arid outside environment by a translucent salt crust. Gases collected from sediments under shallow ponds in the sabkha contain methane in concentrations as high as 3400 ppm. The salt crust could preserve biomarkers and other evidence for life in the salt after it dries out. Chloride-filled depressions have been identified on Mars and although surface flow of water is unlikely on Mars today, ground water is possible. Such a near surface system with modern groundwater flowing under ancient salt deposits could be present on Mars and could be accessed by surface rovers.  相似文献   

12.
Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.  相似文献   

13.
On rocky planets such as Earth and Mars the serpentinization of olivine in ultramafic crust produces hydrogen that can act as a potential energy source for life. Direct evidence of fluid–rock interaction on Mars comes from iddingsite alteration veins found in martian meteorites. In the Yamato 000593 meteorite, putative biosignatures have been reported from altered olivines in the form of microtextures and associated organic material that have been compared to tubular bioalteration textures found in terrestrial sub‐seafloor volcanic rocks. Here, we use a suite of correlative, high‐sensitivity, in situ chemical, and morphological analyses to characterize and re‐evaluate these microalteration textures in Yamato 000593, a clinopyroxenite from the shallow subsurface of Mars. We show that the altered olivine crystals have angular and micro‐brecciated margins and are also highly strained due to impact‐induced fracturing. The shape of the olivine microalteration textures is in no way comparable to microtunnels of inferred biological origin found in terrestrial volcanic glasses and dunites, and rather we argue that the Yamato 000593 microtextures are abiotic in origin. Vein filling iddingsite extends into the olivine microalteration textures and contains amorphous organic carbon occurring as bands and sub‐spherical concentrations <300 nm across. We propose that a martian impact event produced the micro‐brecciated olivine crystal margins that reacted with subsurface hydrothermal fluids to form iddingsite containing organic carbon derived from abiotic sources. These new data have implications for how we might seek potential biosignatures in ultramafic rocks and impact craters on both Mars and Earth.  相似文献   

14.
Magnetite biomineralization and ancient life on Mars   总被引:2,自引:0,他引:2  
Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate.  相似文献   

15.
Loving science and nature and being a scientist can be very different, yet the two are so intertwined in a scientist''s life that you will certainly experience both aspects. This essay presents my perspective on how, as one who loves science and nature, I came to fall in love with centrosome behavior in stem cells and how I came to run a lab as a scientist. When I started, there was a big gap between my love for science and my experience as a scientist. I filled this gap by learning a “laid-back confidence.”Before the beauty of cell biology (or whatever you love), who you are (i.e., your age, gender, or race) is immaterial. Yet history shows that the ease with which you can pursue science is influenced by who you are. This has certainly been my experience. The key is to find a way to fill in the gap between who you are and what you are (i.e., a scientist), a goal in which we must all support each other. It is my hope that this essay will convey something helpful to those who are at early stages of their career and might be encountering obstacles because of who they are.  相似文献   

16.
Ultraviolet (UV) radiation has been an important environmental parameter during the evolution of life on Earth, both in its role as a mutagen and as a selective agent. This was probably especially true during the time from 3.8 to 2.5 billion years ago, when atmospheric ozone levels were less than 1% of present levels. Early Mars may not have had an "ozone shield" either, and it never developed a significant one. Even though Mars is farther away from the Sun than the Earth, a substantial surficial UV flux is present on Mars today. But organisms respond to dose rate, and on Mars, like on Earth, organisms would be exposed to diurnal variations in UV flux. Here we present data on the effect of diurnal patterns of UV flux on microbial ecosystems in nature, with an emphasis on photosynthesis and DNA synthesis effects. These results indicate that diurnal patterns of metabolism occur in nature with a dip in photosynthesis and DNA synthesis in the afternoon, in part regulated by UV flux. Thus, diurnal patterns must be studied in order to understand the effect of UV radiation in nature. The results of this work are significant to the success of human missions to Mars for several reasons. For example, human missions must include photosynthetic organisms for food production and likely oxygen production. An evolutionary approach suggests which organisms might be best suited for high UV fluxes. The diurnal aspect of these studies is critical. Terraforming is a potential goal of Mars exploration, and it will require studies of the effect of Martian UV fluxes, including their diurnal changes, on terrestrial organisms. Such studies may suggest that diurnal changes in UV only require mitigation at some times of day or year.  相似文献   

17.
In this review, I would like to introduce how we can detect the possible life on Mars. Even though the quantitative estimation of the possibility of biogenesis on Mars is difficult, Dr. McKay and his colleagues work has thrown a tiny light for this possibility. Considering Mars environmental conditions, the possible life is microorganisms. The detection of microorganisms in natural environments is not easy even on Earth due to the premature detection technique. We have developed a method based on the fluorescence microscopic technique. This method proved to be successful for the detection of terrestrial microorganisms. Even some pre-biotic cells can be detected. We are developing a miniature detection apparatus which meet the required standard for installing on the Mars landers. We also propose the ground based experiments using Martian meteorites or pseudo-Martian rocks.  相似文献   

18.
We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth''s earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.  相似文献   

19.
McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.  相似文献   

20.
One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号