首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
在实验室条件下研究了水稻土中CH4氧化的特性.结果表明,在早稻种植前采集的水稻土不能氧化大气中的CH4,但当所供给的CH4浓度>10μl·L-1时,能迅速氧化CH4,所供给的CH4浓度越高,氧化CH4的速度越大.经高浓度(>1000μl·L-1)的CH4预培养10d,可使本来不具有氧化大气CH4能力的土壤氧化大气CH4.大田CH4排放通量高的水稻土,氧化CH4的能力较大.  相似文献   

2.
Measurements of methane oxidation rates were made in southeastern Bering Sea water samples with [14C]methane. The rate at which 14CO2 evolved from samples exposed to one methane concentration was defined as the relative methane oxidation rate. Rate determinations at three methane concentrations were used to estimate methane oxidation kinetics. The rate constant calculated from the kinetics and the observed methane concentration in the same water sample were used to calculate an in situ methane oxidation rate and the turnover time. First-order kinetics were observed in essentially all experiments in which methane oxidation kinetics were measured. Relative methane oxidation rates were greater in waters collected at inshore stations than at the offshore stations and were greater in bottom samples than in surface samples. In most water samples analyzed, there was essentially no radioactivity associated with the cells. The resulting respiration percentages were therefore very high with a mean of >98%. These data suggest that most of the methane was used by the microflora as an energy source and that very little of it was used in biosynthesis. The relative methane oxidation rates were not closely correlated with methane concentrations and did not appear to be linked to either oxygen or dissolved inorganic nitrogen concentrations. However, there was a significant correlation with relative microbial activity. Our data suggest that the methane oxidizers were associated with the general microbial heterotrophic community. Since these organisms did not appear to be using methane as a carbon source, it is unlikely that they have been isolated and identified as methane oxidizers in the past.  相似文献   

3.
Evidence supporting a key role for anaerobic methane oxidation in the global methane cycle is reviewed. Emphasis is on recent microbiological advances. The driving force for research on this process continues to be the fact that microbial communities intercept and consume methane from anoxic environments, methane that would otherwise enter the atmosphere. Anaerobic methane oxidation is biogeochemically important because methane is a potent greenhouse gas in the atmosphere and is abundant in anoxic environments. Geochemical evidence for this process has been observed in numerous marine sediments along the continental margins, in methane seeps and vents, around methane hydrate deposits, and in anoxic waters. The anaerobic oxidation of methane is performed by at least two phylogenetically distinct groups of archaea, the ANME-1 and ANME-2. These archaea are frequently observed as consortia with sulfate-reducing bacteria, and the metabolism of these consortia presumably involves a syntrophic association based on interspecies electron transfer. The archaeal member of a consortium apparently oxidizes methane and shuttles reduced compounds to the sulfate-reducing bacteria. Despite recent advances in understanding anaerobic methane oxidation, uncertainties still remain regarding the nature and necessity of the syntrophic association, the biochemical pathway of methane oxidation, and the interaction of the process with the local chemical and physical environment. This review will consider the microbial ecology and biogeochemistry of anaerobic methane oxidation with a special emphasis on the interactions between the responsible organisms and their environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Meromictic lakes with anoxic bottom waters often have active methane cycles whereby methane is generally produced biogenically under anoxic conditions and oxidized in oxic surface waters prior to reaching the atmosphere. Lakes that contain dissolved ferrous iron in their deep waters (i.e., ferruginous) are rare, but valuable, as geochemical analogues of the conditions that dominated the Earth's oceans during the Precambrian when interactions between the iron and methane cycles could have shaped the greenhouse regulation of the planet's climate. Here, we explored controls on the methane fluxes from Brownie Lake and Canyon Lake, two ferruginous meromictic lakes that contain similar concentrations (max. >1 mM) of dissolved methane in their bottom waters. The order Methanobacteriales was the dominant methanogen detected in both lakes. At Brownie Lake, methanogen abundance, an increase in methane concentration with respect to depths closer to the sediment, and isotopic data suggest methanogenesis is an active process in the anoxic water column. At Canyon Lake, methanogenesis occurred primarily in the sediment. The most abundant aerobic methane‐oxidizing bacteria present in both water columns were associated with the Gammaproteobacteria, with little evidence of anaerobic methane oxidizing organisms being present or active. Direct measurements at the surface revealed a methane flux from Brownie Lake that was two orders of magnitude greater than the flux from Canyon Lake. Comparison of measured versus calculated turbulent diffusive fluxes indicates that most of the methane flux at Brownie Lake was non‐diffusive. Although the turbulent diffusive methane flux at Canyon Lake was attenuated by methane oxidizing bacteria, dissolved methane was detected in the epilimnion, suggestive of lateral transport of methane from littoral sediments. These results highlight the importance of direct measurements in estimating the total methane flux from water columns, and that non‐diffusive transport of methane may be important to consider from other ferruginous systems.  相似文献   

5.
Molecular simulation was used to study methane adsorption and its effect on kaolinite swelling. The effects of temperature and pressure were also analysed. The comparisons which validate the force field and model in our paper were made between simulation and experiment. Simulation results demonstrate that adsorption behaviour of methane exhibit Langmuir adsorption behaviour. The temperature has a negative effect on gas adsorption, the adsorption amounts will decrease with increasing temperature at a given pressure. A quantitative relationship between the methane adsorption and the kaolinite swelling was provided. The kaolinite–methane interaction dominates and the methane–methane interaction contributes less than 20% to the total interaction energy. The first peak in the RDFs increases with the increasing pressure, illustrating that the system becomes less structured at higher pressure. Compared with the higher temperature, the first peaks at lower temperature increase as a higher amount of methane adsorbed indicating that the interaction between the kaolinite and methane increase with decreasing temperature. Methane is strongly adsorbed on the sites of the hydrogen and oxygen atoms in kaolinite molecules.  相似文献   

6.
Galveston Bay sediments exhibit substantial spatial and seasonal variability in rates of nitrification and aerobic methane oxidation. We examined the biogeochemical and microbiological controls on these processes using aerobic enrichment slurries. Potential aerobic methane and ammonia oxidation rates from unamended control slurries were compared to rates in slurries amended with methane, ammonium, or methane + ammonium. Bacterial community composition was monitored using denaturing gradient gel electrophoresis (DGGE) analysis of PCR amplified ribosomal and functional gene DNA. Potential methane and ammonia oxidation rates increased over time in sediments amended with methane and ammonium, respectively. The highest potential methane oxidation rates occurred in treatments receiving both ammonium and methane suggesting that methanotrophs in the enrichment cultures were nitrogen limited. The highest ammonia oxidation rates occurred in treatments amended with ammonium only. Treatments receiving both ammonium and methane exhibited ammonia oxidation rates and porewater ammonium concentrations similar to those measured in the unamended control suggesting that methanotrophs may have inhibited ammonia oxidation by sequestering available ammonia. Sequence analysis revealed a decrease in general bacterial community diversity over time and a shift in ammonia-oxidizing bacterial composition corresponding with methane availability. However, methanotroph community composition similarities between treatments with different relative methane oxidation rates suggest that changes in physiological activity, as well as shifts in community composition, contributed to the observed patterns in potential rates.  相似文献   

7.
Inhibition Experiments on Anaerobic Methane Oxidation   总被引:10,自引:5,他引:5       下载免费PDF全文
Anaerobic methane oxidation is a general process important in controlling fluxes of methane from anoxic marine sediments. The responsible organism has not been isolated, and little is known about the electron acceptors and substrates involved in the process. Laboratory evidence indicates that sulfate reducers and methanogens are able to oxidize small quantities of methane. Field evidence suggests anaerobic methane oxidation may be linked to sulfate reduction. Experiments with specific inhibitors for sulfate reduction (molybdate), methanogenesis (2-bromoethanesulfonic acid), and acetate utilization (fluoroacetate) were performed on marine sediments from the zone of methane oxidation to determine whether sulfate-reducing bacteria or methanogenic bacteria are responsible for methane oxidation. The inhibition experiment results suggest that methane oxidation in anoxic marine sediments is not directly mediated by sulfate-reducing bacteria or methanogenic bacteria. Our results are consistent with two possibilities: anaerobic methane oxidation may be mediated by an unknown organism or a consortium involving an unknown methane oxidizer and sulfate-reducing bacteria.  相似文献   

8.
Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs.  相似文献   

9.
The reaction vessel has been designed to measure methane monooxygenase activity. An elastic membrane has been built into one of the walls of the vessel to take liquid samples, avoiding formation of the gaseous phase in the reaction volume. The methane content in the samples is measured in a gas-liquid chromatograph with a flame ionization detector in two ways: 1. by direct measurement of methane in the liquid sample, and 2. by measurement of methane in the gaseous phase after methane diffusion from the liquid sample into the gaseous space of another vessel. The method is simple, sensitive (with a lower limit of 0.1 nMole CH4), and well reproducible. This method permits measurement of the oxidation kinetics of methane and other gaseous hydrocarbons both by intact cells and cell-free preparations of methane oxidizing bacteria.  相似文献   

10.
The spatial distribution and seasonal variation in the concentration and carbon isotopic composition of dissolved methane in a river–lake ecosystem were studied in Lake Biwa, Japan, and its tributary rivers. Methane concentrations in all subsystems examined were supersaturated with respect to the atmosphere. The epilimnion showed higher concentrations of dissolved methane than the hypolimnion in the pelagic zone. Peak methane concentrations were observed at the thermocline. The largest amount of methane in the pelagic water column was recorded at the end of a stagnant period, at which the bottom water of the sublittoral zone (30m in depth) exhibited increased methane concentration. Transect observation of dissolved methane revealed three methane peaks at different water depths in the lake, and river water and the sediments in littoral and sublittoral zones were suggested to be the corresponding sources. Water at the river mouth was replete with dissolved oxygen but also contained a high concentration of methane. The present results suggest that river water and littoral sediment are potential sources of dissolved methane in Lake Biwa, and other sources, such as internal waves, are responsible for increased methane in the pelagic zone at the end of stagnant periods. Carbon stable isotope analysis indicated that there were different sources of dissolved methane, although it was difficult to identify the origins due to high variation of the isotopic composition of methane from different sources.  相似文献   

11.
仝川  罗敏  谭季 《生态学报》2024,44(4):1324-1335
氮素是影响湿地甲烷代谢过程的重要因素之一。氮输入是否影响湿地甲烷排放,增加全球气候变暖的风险,一直受到科学界的高度关注。目前关于氮输入对湿地甲烷排放影响的几篇meta-analysis文章的主要结论均为氮输入促进湿地甲烷排放,但是多篇研究性论文的结果为氮输入抑制或不影响湿地甲烷排放,由此可见氮输入对湿地甲烷排放的影响十分复杂。湿地甲烷代谢包括湿地甲烷产生、氧化和传输过程以及最终的甲烷排放,综述不同形态氮输入对水稻田、内陆湿地和滨海湿地甲烷排放通量影响的复杂性;分析湿地甲烷产生速率和途径、甲烷好氧氧化和硝酸盐/亚硝酸盐型厌氧甲烷氧化对不同形态氮输入的响应及机制。硝态氮输入对湿地甲烷产生具有抑制作用已成共识,然而其它形态氮输入对湿地土壤甲烷产生的影响具有较大的不确定性,氮输入影响湿地甲烷产生的机制主要包括电子受体-底物竞争机制、离子毒性机制、促进植物生长-碳底物供给增加机制以及pH调控机制等。氮输入对湿地好氧甲烷氧化影响的研究多集中在水稻田和泥炭湿地,影响的结果包括促进、抑制或影响不显著;氮输入促进湿地土壤硝酸盐/亚硝酸盐型厌氧甲烷氧化。着重分析氮输入对湿地甲烷代谢影响不确定性的成因,指出...  相似文献   

12.
李君怡  席毅  赵俊福 《生态学报》2022,42(12):4978-4987
森林土壤是一个重要的大气甲烷的汇。然而,相较于寒带和温带,在热带尤其是东南亚地区,森林土壤甲烷通量的观测较少,这限制了目前对热带森林土壤甲烷通量与环境因子之间关系的认识,也给热带森林土壤甲烷汇的估算带来了一定的不确定性。在中国海南省吊罗山国家森林公园的热带森林土壤,采用激光光谱法测量了2016年9月至2018年9月逐月的土壤甲烷通量,并分析了其与周围环境因子的关系。结果表明:研究区土壤是甲烷的汇,山顶样地的年平均吸收量为0.95 kg CH4-C hm-2 a-1,山脚样地的年平均吸收量为1.93 kg CH4-C hm-2 a-1。干季(11月—次年4月)的甲烷吸收通量明显高于湿季(5—10月),占到全年甲烷吸收的68%。山顶样地年平均土壤湿度为19.2%,年内的波动较小(2.8%)。而山脚样地的年平均湿度相对较低,为12.7%,且年内波动大(5.4%)。土壤湿度是控制甲烷吸收最主要的环境因子,可以解释月际甲烷吸收变化的76%,甲烷吸收通量与土壤温度的相...  相似文献   

13.
We used (13)C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 +/- 0.04%, +/- 2 standard deviations of the methane produced during growth) was less than that by M. barkeri (0.15 +/- 0.04%), grown under similar conditions with H(2) and CO(2). Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 +/- 0.05%) than during growth on methanol (0.07 +/- 0.03%). This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O(2), NO(3) (-), SO(4) (2-), SO(3) (2-)) or H(2) to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD(+) showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H(2) concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 +/- 0.01% of the methane provided to A. fulgidus, 0.002 +/- 0.009% to A. lithotrophicus and 0.003 +/- 0.02% to A. profundus). Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in this genus, is required for the anaerobic oxidation of methane, consistent with the "reverse methanogenesis" hypothesis.  相似文献   

14.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments – namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50–100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction (∼10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.  相似文献   

15.
For anaerobic digestion processes nitrogen sources are poorly investigated although they are known as possible process limiting factors (in the hydrolysis phase) but also as a source for fermentations for subsequent methane production by methanogenic archaea. In the present study different complex and defined nitrogen sources were investigated in a lab-scale experiment in order to study their potential to build up methane. The outcome of the study can be summarised as follows: from complex nitrogen sources yeast extract and casamino acids showed the highest methane production with approximately 600ml methane per mole of nitrogen, whereas by the use of skim milk no methane production could be observed. From defined nitrogen sources l-arginine showed the highest methane production with almost 1400ml methane per mole of nitrogen. Moreover it could be demonstrated that the carbon content and therefore C/N-ratio has only minor influence for the methane production from the used substrates.  相似文献   

16.
Abstract

From July to December 2000, ambient methane concentrations were continuously monitored at one sampling site 92 m above ground in Beijing city. Together with meteorological data measured at 22 municipal stations, a backward trajectory inversion model was developed to calculate methane emissions in the city. Model results were compared with a methane emission inventory established with updated emission factors and intensive survey of sources.

From the source inventory, the total methane emissions were estimated to be 296.4Gg/yr, while municipal solid waste and fossil fuel account for 54.5% and 32.4% of total emissions. This showed that methane emissions in Beijing were dominated by anthropogenic sources. The inversion model described real-time methane emitted into the mixing layer along a backward trajectory path and also the exchange between reservoir layer and mixing layer. The Singular Value Decomposition (SVD) matrix inversion technique was used to calculate the methane emissions in each grid in the simulated region. The source distribution and quantitative results from model agreed well with the emission inventory, and the largest uncertainty in it was the distribution of methane emission from coal mines due to lack of trajectories covering coal mine areas.  相似文献   

17.
In two intertidal marshes, the vertical distribution in the sediment and inhibition by ammonium of methane oxidation were investigated by slurry incubation experiments. The two sites differ in their dominant vegetation type, i.e., reed and bulrush, and in their heights above sea level. The reed site was elevated with respect to the bulrush site, resulting in a lower frequency and duration of flooding and, consequently, a higher potential for methane oxidation. Methane oxidation decreased with depth in the bulrush and reed slurries, although methane oxidation associated with root material from the bulrush plants increased with depth. Reed root material had a limited capacity for methane oxidation and showed no significant increase with depth. Inhibition of methane oxidation by ammonium was observed in all samples and depended on methane and ammonium concentrations. Increasing ammonium concentrations resulted in greater inhibition, and increasing methane concentrations resulted in less. Ammonium concentrations had to exceed methane concentrations by at least 30-fold to become effective for inhibition. This ratio was found only in the surface layer of the sediment. Hence, the ecological relevance for ammonium inhibition of methane oxidation in intertidal marshes is rather limited and is restricted to the surface layer. Nitrate production was restricted to the 0- to 5-cm-depth slurries.  相似文献   

18.
Seasonal Study of Methane Oxidation in Lake Washington   总被引:9,自引:6,他引:3       下载免费PDF全文
The distribution of methane and methane-oxidizing bacteria in the water column of Lake Washington was determined monthly for 1 year. The methane profiles were relatively constant, with little stratification and low concentrations (0.05 to 0.5 μM). The number of methane-oxidizing bacteria detected by a filter-plating method was routinely <1/ml throughout the water column, and no incorporation or oxidation of methane was detected by radioisotopic labeling, even after methane was added. However, samples taken from the sediment-water interface contained as much as 3 μM methane and 50 CFU of methane-oxidizing bacteria per ml and showed significant rates of methane oxidation and incorporation. To define the region of maximum activity more precisely, vertical profiles of the sediment were examined. The concentration of methane increased with depth to a maximum of 150 to 325 μM at 2.5 cm, and significant rates of methane oxidation were found within the top 2.5 cm. The apparent Kms for methane and oxygen were determined for samples from the top 1.0 cm of the sediment and found to be ca. 10 and 20 μM, respectively. Projected values for methane oxidation rates suggested that maximum methane oxidation occurred in the top 0.5 cm of the sediment.  相似文献   

19.
植物在CH4产生、氧化和排放中的作用   总被引:19,自引:0,他引:19  
综合评述了植物对CH4产生、内源CH4氧化和CH4排放的影响.不同植物释放根系分泌物能力的不同是造成CH4产生量差异的主要原因。而植物不同生育期分泌分泌物能力的差异是造成季节性变化的关键.植物泌O2能力的高低和季节性变化通过影响内源CH4的氧化来改变CH4的排放数量.植物问通气组织数量和密度的差异及其随生育期的变化,通过影响对CH4的传输能力来改变CH4的排放量.因此,植物排放CH4的通量及其季节性变化规律是由植物根系分泌分泌物能力、分泌O2能力和传输CH4能力综合决定的.  相似文献   

20.
The rates of microbial processes of sulfate reduction and of the methane cycle were measured in the bottom sediments of the Sevastopol basin, where seeps of gaseous methane have been previously found. Typically for marine environments, sulfate reduction played the major role in the terminal phase of decomposition of organic matter (OM) in reduced sediments of this area. The rate of this process depended on the amount of available OM. The rate of methanogenesis in the sediments increased with depth, peaking in the subsurface horizons, where decreased sulfate concentration was detected in the pore water. The highest rates of sulfate-dependent anaerobic methane oxidation were found close to the methane-sulfate transition zone as is typical of most investigated marine sediments. The data on the carbon isotopic composition of gaseous methane from the seeps and dissolved CH4 from the bottom sediments, as well as on the rates of microbial methanogenesis and methane oxidation indicate that the activity of the methane seeps results from accumulation of biogenic methane in the cavities of the underlying geological structures with subsequent periodic release of methane bubbles into the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号