首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The purple photosynthetic bacterium Chromatium vinosum , strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide → sulfur → sulfate, sulfite → sulfate, and thiosulfate → sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.  相似文献   

2.
Microbial sulfate reduction is among the most ubiquitous metabolic processes on earth. The oldest evidence of microbial sulfate reduction appears in the ca. 3.5 Ga Dresser Formation in the North Pole area of Pilbara Craton in Western Australia. That evidence was found through analysis of quadruple sulfur isotopes of sulfate and sulfide minerals deposited on the seafloor. However, the activity of microbial sulfate reduction below the Archean seafloor remains poorly understood. Here, we report the quadruple sulfur isotopic compositions of sulfide minerals within hydrothermally altered seafloor basalt and less altered basaltic komatiite collected from the North Pole Dome area. The Δ33S values of the sulfide minerals were nonzero negative, suggesting that sulfate reduction occurred below the Archean seafloor. To constrain the substrate sulfate sources and sulfate reduction processes, we constructed a numerical model. Comparing the modeled and observed sulfur isotopes, we show that the substrate sulfate comprises seawater sulfate with a negative Δ33S anomaly and 34S‐enriched sulfate with no anomalous Δ33S. The latter component probably represents sulfate produced by local hydrothermal processes. The maximum sulfur isotopic fractionation between the putative substrate sulfate and the observed sulfide minerals within the altered basalt and basaltic komatiite is 35‰, which is consistent with a microbial origin. Alternatively, thermochemical sulfate reduction may also produce sulfide. However, considering the hydrothermal temperature inferred from the metamorphic grade of the altered basalt, the sulfur isotopic fractionation produced by inorganic sulfate reduction is probably below 20‰. Collectively, larger fractionations imply the involvement of biological sulfate reduction processes, both in the hydrothermal system below the seafloor and in less altered subsurface settings.  相似文献   

3.
Concentrations of various sulfur compounds (SO42−, H2S, S0, acid-volatile sulfide, and total sulfur) were determined in the profundal sediments and overlying water column of a shallow eutrophic lake. Low concentrations of sulfate relative to those of acid-volatile sulfide and total sulfur and a decrease in total sulfur with sediment depth implied that the contribution of dissimilatory sulfur reduction to H2S production was relatively minor. Addition of 1.0 mM Na235SO4 to upper sediments in laboratory experiments resulted in the production of H235S with no apparent lag. Kinetic experiments with 35S demonstrated an apparent Km of 0.068 mmol of SO42− reduced per liter of sediment per day, whereas tracer experiments with 35S indicated an average turnover time of the sediment sulfate pool of 1.5 h. Total sulfate reduction in a sediment depth profile to 15 cm was 15.3 mmol of sulfate reduced per m2 per day, which corresponds to a mineralization of 30% of the particulate organic matter entering the sediment. Reduction of 35S0 occurred at a slower rate. These results demonstrated that high rates of sulfate reduction occur in these sediments despite low concentrations of oxidized inorganic compounds and that this reduction can be important in the anaerobic mineralization of organic carbon.  相似文献   

4.
Brian Fry 《Biogeochemistry》1986,2(4):329-343
Cores from five lakes of the Adirondack Mountains, New York, were analyzed for sedimentary sulfur concentrations and stable sulfur isotopic compositions. Isotopic values of total sedimentary sulfur were as much as 6 to 8 lower than isotopic values of sulfur sources (soils, tree leaves and lake water sulfate) which showed little isotopic variation in the Adirondacks. The low isotopic values of recent sediments indicate increased sulfate reduction, probably in response to increased sulfate loading and acid deposition. Detailed historical reconstruction of sulfate loading histories from sedimentary sulfur profiles is premature, however, since model calculations indicate that sulfur can be added to deeper older sediments by ongoing, contemporary sulfate reduction.  相似文献   

5.
Sulfate minerals are rare in the Archean rock record and largely restricted to the occurrence of barite (BaSO4). The origin of this barite remains controversially debated. The mass‐independent fractionation of sulfur isotopes in these and other Archean sedimentary rocks suggests that photolysis of volcanic aerosols in an oxygen‐poor atmosphere played an important role in their formation. Here, we report on the multiple sulfur isotopic composition of sedimentary anhydrite in the ca. 3.22 Ga Moodies Group of the Barberton Greenstone Belt, southern Africa. Anhydrite occurs, together with barite and pyrite, in regionally traceable beds that formed in fluvial settings. Variable abundances of barite versus anhydrite reflect changes in sulfate enrichment by evaporitic concentration across orders of magnitude in an arid, nearshore terrestrial environment, periodically replenished by influxes of seawater. The multiple S‐isotope compositions of anhydrite and pyrite are consistent with microbial sulfate reduction. S‐isotope signatures in barite suggest an additional oxidative sulfate source probably derived from continental weathering of sulfide possibly enhanced by microbial sulfur oxidation. Although depositional environments of Moodies sulfate minerals differ strongly from marine barite deposits, their sulfur isotopic composition is similar and most likely reflects a primary isotopic signature. The data indicate that a constant input of small portions of oxidized sulfur from the continents into the ocean may have contributed to the observed long‐term increase in Δ33Ssulfate values through the Paleoarchean.  相似文献   

6.
Challenger Mound, a 150‐m‐high cold‐water coral mound on the eastern flank of the Porcupine Seabight off SW Ireland, was drilled during Expedition 307 of the Integrated Ocean Drilling Program (IODP). Retrieved cores offer unique insight into an archive of Quaternary paleo‐environmental change, long‐term coral mound development, and the diagenetic alteration of these carbonate fabrics over time. To characterize biogeochemical carbon–iron–sulfur transformations in the mound sediments, the contents of dithionite‐ and HCl‐extractable iron phases, iron monosulfide and pyrite, and acid‐extractable calcium, magnesium, manganese, and strontium were determined. Additionally, the stable isotopic compositions of pore‐water sulfate and solid‐phase reduced sulfur compounds were analyzed. Sulfate penetrated through the mound sequence and into the underlying Miocene sediments, where a sulfate–methane transition zone was identified. Small sulfate concentration decreases (<7 mm ) within the top 40 m of the mound suggested slow net rates of present‐day organoclastic sulfate reduction. Increasing δ34S‐sulfate values due to microbial sulfate reduction mirrored the decrease in sulfate concentrations. This process was accompanied by oxygen isotope exchange with water that was indicated by increasing δ18O‐sulfate values, reaching equilibrium with pore‐water at depth. Below 50 mbsf, sediment intervals with strong 34S‐enriched imprints on chromium‐reducible sulfur (pyrite S), high degree‐of‐pyritization values, and semi‐lithified diagenetic carbonate‐rich layers characterized by poor coral preservation, were observed. These layers provided evidence for the occurrence of enhanced microbial sulfate‐reducing activity in the mound in the past during periods of rapid mound aggradation and subsequent intervals of non‐deposition or erosion when geochemical fronts remained stationary. During these periods, especially during the Early Pleistocene, elevated sulfate reduction rates facilitated the consumption of reducible iron oxide phases, coral dissolution, and the subsequent formation of carbonate cements.  相似文献   

7.
Barite chimneys are known to form in hydrothermal systems where barium‐enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ?36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low‐temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow‐spreading Arctic Mid‐Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high‐temperature black smoker fluid, which is corroborated by 87Sr/86Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2‐ and CH4‐rich high‐temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low‐temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on these systems.  相似文献   

8.
Field experiments were carried out in order to assess the practicality and application of 34SO4 2? as a tracer of the physical and geochemical fate of aerially derived sulfur in peat. Six enclosures were isolated in a lowland peat with high historical acid sulfate inputs at Thorne Moors, UK, and treated with regular additions of 99.9% pure 34SO4 2? for 12 months. The total 34S sulfate addition resulted in negligible change to the sulfate concentration, but allowed unequivocal change to the isotopic composition of sulfate inputs relative to pre-experiment control data set. Migration and biogeochemical transformations of the 34S tracer were monitored via depth-specific sampling of surface and pore-waters every 6 weeks, and sacrificial sampling of solid peat at 12, 24, and 48 week intervals. Tracer incorporation into the various sulfur forms within the surface and pore-waters, vegetation, organic and inorganic fractions of the peat was apparent through strong positive deviation of δ34S from natural values (in comparison with 18 months control data set for the same site). Consistency within enclosures is good and a detailed model of sulfur cycling within each enclosure can be established but natural variability in the control data and differences between replicate enclosures prevents more quantitative assessment. The 34S tracer was initially rapidly removed from surface waters. The majority of uptake was by living vegetation (5.7–33% of tracer added, mean 17.6%), or through transformation to the organic fraction of the upper peat (25 cm) after rapid bacterial reduction of sulfate to sulfide. Despite penetration of 34S labelled sulfate to deeper pore-waters over time, there was no significant reduction to sulfide or subsequent incorporation into organic or inorganic fraction at these depths (>25 cm); organic and inorganic sulfur, and pore-water sulfide retained their initial unlabelled isotopic compositions. This limitation on sulfur cycling at relatively shallow depth may be attributed to diminished labile organic matter inhibiting the activity of sulfate reducing bacteria or poisoning of sulfate reducers by high dissolved sulfide, after long-term sulfur pollution of this ecosystem.  相似文献   

9.
The extent of fractionation of sulfur isotopes by sulfate‐reducing microbes is dictated by genomic and environmental factors. A greater understanding of species‐specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur‐metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell‐specific sulfate reduction rates < 0.3 × 10?15 moles cell?1 day?1. Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰–45‰) net isotope fractionation (ε34Ssulfide‐sulfate). Measured ε34S values could be reproduced in a mechanistic fractionation model if 1%–2% of the microbial community (10%–60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate‐reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.  相似文献   

10.
An unique stable isotope labelling experiment was conducted whereby mixtures of sulfate and sulfite of different isotopic compositions were metabolized by Clostridium pasteurianum. The results showed during reduction of 1 mM SO 3 = plus 1 mM SO 4 = , essentially all evolved H2S arose from the sulfite whereas in the case of cellular sulfur, 85% was derived from sulfite and the remainder from sulfate.  相似文献   

11.
Sulfate-reducing bacteria (SRB) are thought to be actively involved in the cycling of sulfur in acidic mine tailings. However, most studies have used circumstantial evidence to assess microbial sulfate activity in such environments. In order to fully ascertain the role of sulfate-reducing bacteria (SRB) in sulfur cycling in acidic mine tailings, we measured sulfate reduction rates, sulfur isotopic composition of reduced sulfide fractions, porewaters and solid-phase geochemistry and SRB populations in four different Cu-Zn tailings located in Timmins, Ontario, Canada. The tailings were sampled in the summer and in the spring, shortly after snowmelt. The results first indicate that all four sites showed very high sulfate reduction rates in the summer (~100–1000 nmol cm? 3d?1), which corresponded to the presence of sulfide in the porewaters and to high SRB populations. In some of the sites, zones of microbial sulfate reduction also corresponded to a decline of organic carbon and to an apparent pyrite (with slightly negative δ34S values) enrichment around the same depth. Microbial sulfate reduction was also important in permanently acidic (pH 2–3) mine tailings sites, suggesting that SRB can be active under very acidic conditions. Secondly, the results showed that microbial sulfate reduction was greatly reduced in the spring, suggesting that temperature might be a key factor in the activity of SRB. However, a closer look at the results indicated that temperature was not the sole factor and that acidic conditions and limited substrate availability in the spring appeared to be important as well in limiting microbial sulfate par reduction in sulfidic mine tailings. Finally, the results indicate that sulfur undergoes rapid cycling throughout the year and that microbial sulfate reduction and metal sulfide precipitation do not appear to be a permanent sink for metals.  相似文献   

12.
The main wood degraders in aerobic terrestrial ecosystems belong to the white- and brown-rot fungi, where their biomass can be created on wood decay only. However, total sulfur (S) concentration in wood is very low and only little is known about the different sulfur compounds in wood today. Sulfur-starved brown-rot fungi Gloeophyllum trabeum and Oligoporus placenta were incubated on sterilized pine wood blocks whereas Lentinus cyathiformis and the white-rot fungi Trametes versicolor were incubated on sterilized beech wood blocks. After 19 weeks of incubation, the S oxidation status was analyzed in wood, in degraded wood, and in biomass of wood-degrading fungi by synchrotron based S K-edge XANES, and total S and sulfate were quantified. Total sulfur and sulfate content in pine wood blocks were approximately 50 and 1 ??g g−1, respectively, while in beech wood approximately 100 and 20 ??g g−1 were found, respectively. Sulfur in beech was dominated by sulfate-esters. In contrast, pine wood also contained larger amounts of reduced S. Three out of four selected fungi caused a reduction of the S oxidation state in wood from oxidized S (sulfate-ester, sulfate) to intermediate S (sulfonate, sulfoxide) or reduced S (thiols, e.g., proteins, peptides, enzyme cofactors). Only O. placenta shifted thiol to sulfonate. Growth experiments of these fungi on selective minimal media showed that in particular cysteine (thiol), sulfonates, and sulfate enhanced total mycelium growth. Consequently, wood-degrading fungi were able to utilize a large variety of different wood S sources for growth but preferentially transformed in vivo sulfate-esters and thiol into biomass structures.  相似文献   

13.
Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm–1 day–1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm–2 day–1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm–2 day–1 .During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

14.
The hydrolysis of p-nitrophenyl sulfate, p-nitrocatechol sulfate, and [35S]sodium dodecyl sulfate was examined in anoxic sediments of Wintergreen Lake, Michigan. Significant levels of sulfhydrolase activity were observed in littoral, transition, and profundal sediment samples. Rates of sulfate formation suggest that the sulfhydrolase system would represent a major source of sulfate within these sediments. Sulfate formed by ester sulfate hydrolysis can support dissimilatory sulfate reduction as shown by the incorporation of 35S from labeled sodium dodecyl sulfate into H235S. Sulfhydrolase activity varied with sediment depth, was greatest in the littoral zone, and was sensitive to the presence of oxygen. Estimations of ester sulfate concentrations in sediments revealed large quantities of ester sulfate (~30% of total sulfur). Both total sulfur and ester sulfate concentrations varied with the sediment type and were two to three orders of magnitude greater than the inorganic sulfur concentration.  相似文献   

15.
Stratiform baryte deposits are widespread in Cambrian and Devonian strata in China and around the world. In this article, the authors studied the sulfur isotopic features and forming mechanism of the stratiform baryte deposits occurring within the Upper Devonian cherts of the Zhenning-Ziyun county, Guizhou province, located in the Southwestern margin of the Yangtze Platform. The sulfur isotopic data from 18 baryte ore samples of the Leji section of Zhenning county are presented herein with values that range from +41.9‰ to +68.4‰ (AVG = +59.9‰). The δ34S values of the baryte ore from the Mohao section of Ziyun county are stable and show a narrow range from +41.3‰ to +47.0‰ (AVG = +44.0‰). In the Luocheng section of Ziyun county, the δ34S values of the baryte ore vary from +27.6‰ to +36.4‰ (AVG = +32.7‰). The δ34S values of all samples are higher than those of the coeval seawater sulfates (+25‰). The scanning electron microscope analysis indicates that spherical, dumbbell-shaped, clavate bacterial and bacteria-like fossils were observed, as well as the irregular schistose and framboid forms of Fe oxides that occur around the surfaces of baryte grains and inter-grains. Fe oxides take irregular schistose and framboid forms. These findings imply the significant concentration of heavy sulfur related to the seawater sulfates with the action of bacterial sulfate reduction in a closed basin. In addition, the trend of the δ34S value of baryte ores is gradually decreasing from the Leji to Mohao and Luocheng sections, which suggests that Leji area is located in the deepwater area of the restricted rift basin, and in a more closed depositional environment.  相似文献   

16.
We present new data of oxygen isotopes in marine sulfate (δ18OSO4) in pore fluid profiles through organic‐rich deep‐sea sediments from 11 ODP sites around the world. In almost all sites studied sulfate is depleted with depth, through both organic matter oxidation and anaerobic methane oxidation. The δ18OSO4 increases rapidly near the top of the sediments, from seawater values of 9 to maxima between 22 and 25, and remains isotopically heavy and constant at these values with depth. The δ18OSO4 in these pore fluid profiles is decoupled from variations in sulfur isotopes measured on the same sulfate samples (δ34SSO4); the δ34SSO4 increases continuously with depth and exhibits a shallower isotopic increase. This isotopic decoupling between the δ34SSO4 and the δ18OSO4 is hard to reconcile with the traditional understanding of bacterial sulfate reduction in sediments. Our data support the idea that sulfate or sulfite and water isotopically exchange during sulfate reduction and that some of the isotopically altered sulfur pool returns to the environment. We calculate that the rapid increase in the δ18OSO4 in the upper part of these sediments requires rates of this oxygen isotope exchange that are several orders of magnitude higher than the rates of net sulfate reduction calculated from the sulfate concentration profiles and supported by the δ34SSO4. We suggest several mechanisms by which this may occur, including ‘net‐zero’ sulfur cycling, as well as further experiments through which we can test and resolve these processes.  相似文献   

17.
The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.  相似文献   

18.
Studies of microbial sulfate reduction have suggested that the magnitude of sulfur isotope fractionation varies with sulfate concentration. Small apparent sulfur isotope fractionations preserved in Archean rocks have been interpreted as suggesting Archean sulfate concentrations of <200 μm , while larger fractionations thereafter have been interpreted to require higher concentrations. In this work, we demonstrate that fractionation imposed by sulfate reduction can be a function of concentration over a millimolar range, but that nature of this relationship depends on the organism studied. Two sulfate‐reducing bacteria grown in continuous culture with sulfate concentrations ranging from 0.1 to 6 mm showed markedly different relationships between sulfate concentration and isotope fractionation. Desulfovibrio vulgaris str. Hildenborough showed a large and relatively constant isotope fractionation (34εSO4‐H2S ? 25‰), while fractionation by Desulfovibrio alaskensis G20 strongly correlated with sulfate concentration over the same range. Both data sets can be modeled as Michaelis–Menten (MM)‐type relationships but with very different MM constants, suggesting that the fractionations imposed by these organisms are highly dependent on strain‐specific factors. These data reveal complexity in the sulfate concentration–fractionation relationship. Fractionation during MSR relates to sulfate concentration but also to strain‐specific physiological parameters such as the affinity for sulfate and electron donors. Previous studies have suggested that the sulfate concentration–fractionation relationship is best described with a MM fit. We present a simple model in which the MM fit with sulfate concentration and hyperbolic fit with growth rate emerge from simple physiological assumptions. As both environmental and biological factors influence the fractionation recorded in geological samples, understanding their relationship is critical to interpreting the sulfur isotope record. As the uptake machinery for both sulfate and electrons has been subject to selective pressure over Earth history, its evolution may complicate efforts to uniquely reconstruct ambient sulfate concentrations from a single sulfur isotopic composition.  相似文献   

19.
In the presence of excess sulfate, cysteine synthesis in pumpkin (Cucurbita pepo) leaves is not limited by sulfate reduction, but by the availability of O-acetylserine. Feeding of O-acetylserine or its metabolic precursors S-acetyl-coenzyme-A and coenzyme A to leaf discs enhanced the incorportion of [35S]sulfate into reduced sulfur compounds, mainly into cysteine, at the cost of lowered H2S emission; the uptake and reduction of sulfate is not affected by these treatments. β-Fluoropyruvate, an inhibitor of the generation of S-acetyl-coenzyme A via pyruvate dehydrogenase, stimulated H2S emission in response to sulfate. This stimulation is overcompensated by addition of O-acetylserine, S-acetyl-coenzyme A, or coenzyme A. These results indicate that, in the presence of high amounts of sulfate, excess sulfur is reduced and emitted as H2S into the atmosphere. The H2S emitted seems to be produced by liberation from a precursor of cysteine rather than by cysteine desulfhydration.  相似文献   

20.
Soil management practices that involve additions of organic materials may influence plant sulfur availability in highly-weathered, acid soils. This study evaluated the effects of organic additions on sulfate adsorption and sulfur availability in a limed (3,4 t ha-1) and unlimed Typic Haplustox soil of the Cerrado Region of Brazil. In unlimed soil, the proportion of applied sulfate (600 kg S ha-1 as gypsum) that was adsorbed temporarily decreased over two cropping seasons by incorporation of 10 t dry matter ha-1 crop-1 of guinea grass (Panicum maximum Jacq.) but not when a similar quantity of a tropical legume, feijâo de porco (Canavalia ensiformis L.), was added. Liming reduced sulfate adsorption and resulted in sulfate leaching to a depth of 30 to 45 cm. Both plant materials temporarily reduced sulfate adsorption in laboratory studies when added to an unlimed soil at a rate equivalent to 40 t ha-1. Analysis of soil properties affected by organic additions and liming showed significant correlations between sulfate adsorption and soil pH, extractable aluminum, calcium and magnesium, and surface charge. Maize dry matter yields increased by 1.3 to 3.5 t ha-1 with addition of both organic materials. However, only the feijâo de porco treatment resulted in increases in sulfur uptake for the years in which organic materials were applied. Determining the effects of organic material additions on plant sulfur availability is complicated by the combined effects of sulfur mineralization, sulfate adsorption, and the plant's ability to utilize adsorbed subsoil sulfate.Joint contribution of Cornell University and CPAC-EM- BRAPA. This research was supported by USAID through the Title XII CRSP subgrant SM-CRSP-10 from North Carolina State University  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号