首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Iron (Fe) is an essential nutrient to most microorganisms. Aerobic microorganisms exhibit various strategies for acquiring Fe at near-neutral pH conditions, where Fe oxyhydroxides are insoluble. Although much research has focused on microbial acquisition of Fe from minerals, little is known about Fe acquisition from natural organic matter (NOM). Yet, in surface waters, soils and shallow sediments, Fe is often associated with natural organic matter (NOM), and this NOM-associated Fe could represent an important pool of Fe for microorganisms. Here, we investigated the growth of aerobic Pseudomonas mendocina on soil and surface water NOM samples containing Fe, under Fe-limited conditions. In the presence of NOM, bacteria grew to population sizes greater than in no-Fe-added controls, indicating that the bacteria were able to access Fe associated with NOM. Maximum population size correlated with the NOM-associated Fe concentration. In an additional experiment, Pseudomonas putida was able to acquire Fe from an NOM sample, demonstrating that this ability is not limited to P. mendocina. When Fe was added as 30 μ M FeEDTA plus NOM, together in the same reaction flasks, P. mendocina and P. putida growth was less than in the presence of 30 μM FeEDTA alone. The fact that Fe sources are not simply additive and that the presence of NOM inhibits growth in FeEDTA suggests that further study on the responses of bacteria to a combination of Fe sources is needed to understand the complexities of bacterial Fe acquisition in the subsurface.  相似文献   

2.
Most Trichloroethylene (TCE) biodegradation reports refer to methanogenic conditions, however, in this work, enhanced sulfidogenesis and TCE biodegradation were achieved in an upflow anaerobic sludge blanket (UASB) reactor in which a completely sulfidogenic sludge, from hydrothermal vents sediments, was developed. The work was divided in three stages, (i) sludge development and sulfate reducing activity (SRA) evaluation, (ii) TCE biodegradation and (iii) SRA evaluation after TCE biodegradation. For (i) SR was 98 ± 0.1%, 84% as sulfide (H2S, 1200 ± 28 mg/L), sulfate reducing activity (SRA) was 188 ± 50 mg COD H2S/g VSS*d. For (ii) The reactor reached 74% of TCE removal, concentrations of vinyl chloride of 16 ± 0.3 μM (5% of the TCE added) and ethene 202 ± 81 μM (67% of the TCE added), SRA of 161 ± 7 mg COD H2S/g VSS*d, 68% of sulfide (H2S) production and 93% of COD removal. For (iii) SRA was of 248 ± 22 mg COD H2S/g VSS*d demonstrating no adverse effects due to TCE.Among the genera of the microorganisms identified in the sludge during TCE biodegradation were: Dehalobacter, Desulfotomaculum, Sulfospirillum, Desulfitobacterium, Desulfovibrio and Clostridium. To the best of our knowledge, this is the first report using a sulfidogenic UASB reactor to biodegrade TCE. The overall conclusions of this work are that the reactor is efficient on both, sulfate and TCE biodegradation and it could be used to decontaminate wastewater containing organic solvents and relatively high concentrations of sulfate.  相似文献   

3.
The cometabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 (strain ATCC 700007) at different concentrations was studied in single- and two-phase systems using 2-undecanone as the second organic phase. Toluene vapors were used as the primary growth substrate for Pseudomonas putida F1. The effects of the biomass concentration and the phase ratio on the biodegradation process were investigated. The best biomass concentration and the most suitable phase ratio were found to be 0.462 and 0.025 g/L (vorg/vaq), respectively. In the single-phase system, 36.5 mg/L TCE was degraded completely in 15 hours and only 78% of 55 mg/L TCE was degraded in 27 hours, while in the two-phase system 55 mg/L TCE was degraded completely in 14 hours. The use of the two-phase system not only decreased the biodegradation time of TCE but also prevented the inhibition effect of high concentrations of TCE on the microbial biomass.  相似文献   

4.
Soil microcosms and enrichment cultures from subsurface sediments and groundwaters contaminated with trichloroethylene (TCE) were examined. Total lipids, [I‐‘4C]acetate incorporation into lipids, and [Me‐3H]thymidine incorporation into DNA were determined in these subsurface environments. In heavily TCE‐contam‐inated zones (greater than 500 mg/L) radioisotopes were not incorporated into lipids or DNA. Radioisotope incorporation occurred in sediments both above and below the TCE plume. Phospholipid fatty acids (PLFA) were not detected, i.e., less than 0.5 pmol/L in heavily contaminated groundwater samples. In less contaminated waters, extracted PLFA concentrations were greater than 100 pmollL and microbial isolates were readily obtained. Degradation of 30–100 mg/L TCE was observed when sediments were amended with a variety of energy sources. Microorganisms in these subsurface sediments have adapted to degrade TCE at concentrations greater than 50 mg/L.  相似文献   

5.
This research investigated the potential role of siderophores in aerobic microbial Fe acquisition from natural organic matter (NOM; XAD-8 isolate and reverse osmosis concentrate pre- and post-Chelex® treatment) through the use of a siderophore-producing Pseudomonas mendocina wild type (WT) bacterium and an engineered mutant (Mt) that was incapable of siderophore production. NOM had complex effects on microbial growth under Fe-limited conditions as measured by optical density, most likely because of the presence of other toxic (trace) metals such as Al, NOM binding interference with additional trace metal nutrients, and/or biofilm development. However, a bioassay for cellular Fe status showed that both WT and Mt readily acquired Fe naturally associated with NOM. Thus, while siderophores may be useful for Fe acquisition from NOM by P. mendocina, they do not appear to be essential for this process.  相似文献   

6.
刘洪艳  袁媛  张姗  李凯强 《微生物学报》2021,61(6):1496-1506
【目的】在异化铁还原细菌培养体系中,通过外加电子穿梭体,分析电子穿梭体种类与浓度对细菌异化铁还原性质的影响。【方法】以一株发酵型异化铁还原细菌Clostridium butyricum LQ25为研究对象,设置水溶性介体蒽醌-2-磺酸钠和核黄素作为外加电子穿梭体。【结果】在氢氧化铁为电子受体、葡萄糖为电子供体培养条件下,不同浓度蒽醌-2-磺酸钠和核黄素对菌株LQ25异化铁还原效率影响具有显著性差异。外加蒽醌-2-磺酸钠浓度为0.5 mmol/L时,菌株累积产生Fe(Ⅱ)浓度最高,为12.95±0.08 mg/L,相比对照组提高88%。核黄素浓度为100mg/L时,菌株累积产生Fe(Ⅱ)浓度是11.06±0.04mg/L,相比对照组提高61%。外加电子穿梭体能够改变菌株LQ25发酵产物中丁酸和乙酸浓度,提高乙酸相对含量。【结论】蒽醌-2-磺酸钠和核黄素作为外加电子穿梭体能显著促进细菌异化铁还原效率,为揭示发酵型异化铁还原细菌胞外电子传递机制提供实验支持。  相似文献   

7.
BothPseudomonas putida F1 and a mixed culture were used to study TCE degradation in continuous culture under aerobic, non-methanotrophic conditions. TCE mass balance studies were performed with continuous culture reactors to determine the total percent removed in the reactors, and to quantify the percent removed by air stripping and biodegradation. Adsorption of TCE to biomass was assumed to be negligible. This research demonstrated the feasibility of treating TCE-contaminated water under aerobic, non-methanotrophic conditions with a mixed-culture, continuous-flow system.Initially glucose and acetate were fed as primary substrates. Pnenol, which has been shown to induce TCE-degrading enzymes, was fed at a much lower concentration (20mg/L). Little degradation of TCE was observed when acetate and glucose were the primary substrates. After omitting glucose and acetate from the feed and increasing the phenol concentration to 50mg/L, TCE biotransformation was observed at a significant level (46%). When the phenol concentration in the feed was increased to 420mg/L, 85% of the incoming TCE was estimated to have been biodegraded. Under the same conditions, phenol utilization by the mixed culture was greater than that ofP. putida F1, and TCE degradation by the mixed culture (85%) exceeded that ofP. putida F1 (55%). The estimated percent-of-TCE biodegraded by the mixed culture was consistently greater than 80% when phenol was fed at 420mg/L. Biodegradation of TCE was also observed in mixed-culture, batch experiments.  相似文献   

8.
Several low-molecular-weight organic carbon (LMWOC) compounds (acetate, propionate, butyrate, lactate, and glucose) were added to flooded arsenic-rich tailing mine soil to investigate their effect to the mobilization of As/Fe and potential shift of microbial community. A promoting effect to the mobilization and biotransformation of As(V)/Fe(III) in the soils resulting from the supplementation with LMWOCs substrate was indicated compared to the biotic microcosm amended with deionized water alone. During 38-day biotic incubation, more than 2100 μg/L of As(III) and 4.2 mg/L of Fe(II) levels were released from the soils amended with LMWOCs substrates, compared to the levels of As(III) and Fe(II) (less 35 μg/L and 1.82 mg/L) derived from the biotic supplementation with deionized water alone. PCR-DGGE indicated that several LMWOCs-responded bacteria were mostly related to Firmicutes and Proteobacteria. Moreover, a negligible impact on the abundance of Fe(III)-reducing family Geobacteraceae was indicated in the LMWOCs-amended soils. However, an increased abundance of sulfate-reducing bacteria but a decreased abundance of arsenate-respiring bacteria were indicated upon the soils supplemented with acetate alone, compared with other LMWOC amendments. DNA-stable isotope probing analysis demonstrated that the dual roles of acetate was not only served as an electron donor for biotransformation of As(V)/Fe(III) in soil, but also assimilated as a powerful energy source to promote the growth of sulfate-reducing bacteria. The findings suggest that there are specific bacteria that preferentially respond to the additions of LMWOC for controlling the biochemical cycle process of As/Fe in soils.  相似文献   

9.
The biotransformation of trichloroethylene (TCE) under various electron acceptor conditions was investigated by using enrichment cultures developed from the anaerobic digester sludge of Thibodaux sewage treatment plant. The results indicated that TCE was biotransformed under sulfate reducing, methanogenic, nitrate reducing, iron reducing, and fermenting conditions. However, the rates of TCE removal varied among the conditions studied. The fastest removal of TCE (100% removal in 9 days) was observed under mixed electron acceptor conditions, followed in order by methanogenic, fermenting, iron reducing, sulfate reducing, and nitrate reducing conditions. Under mixed electron acceptor conditions, the TCE was converted to ethene, which was further metabolized. Under sulfate and nitrate reducing conditions, the major metabolites produced from TCE metabolism were cis and trans dichloroethylene (DCE). Under methanogenic, iron reducing, and fermenting conditions, cis and trans DCE and ethene were produced from TCE metabolism. This study showed evidence for TCE metabolism in a mixed microbial population system similar to any contaminated field sites, where heterogeneous microbial population exists. Received: 21 July 2000 / Accepted: 5 September 2000  相似文献   

10.
刘洪艳  袁媛  张姗  李凯强 《微生物学通报》2021,48(12):4521-4529
[背景] 一些异化铁还原细菌兼具铁还原和发酵产氢能力,可作为发酵型异化铁还原细菌还原机制研究的对象。[目的] 筛选出一株发酵型异化铁还原细菌。在异化铁还原细菌培养体系中,设置不同电子供体并分析电子供体。[方法] 通过三层平板法从海洋沉积物中筛选纯菌株,基于16S rRNA基因序列进行菌株鉴定。通过测定细菌培养液Fe (II)浓度及发酵产氢量分析菌株异化铁还原和产氢性质。[结果] 菌株LQ25与Clostridium butyricum的16S rRNA基因序列相似性达到100%,结合电镜形态观察,菌株命名为Clostridium sp.LQ25。在氢氧化铁为电子受体培养条件下,菌株生长较对照组(未添加氢氧化铁)显著提高。菌株LQ25能够利用丙酮酸钠、葡萄糖和乳酸钠进行生长。丙酮酸钠为电子供体时,菌株LQ25细胞生长和异化铁还原效率最高,菌体蛋白质含量是(78.88±3.40) mg/L,累积产生Fe (II)浓度为(8.27±0.23) mg/L。以葡萄糖为电子供体时,菌株LQ25发酵产氢量最高,达(475.2±14.4) mL/L,相比对照组(未添加氢氧化铁)产氢量提高87.7%。[结论] 筛选到一株具有异化铁还原和发酵产氢能力的菌株Clostridium sp.LQ25,为探究发酵型异化铁还原细菌胞外电子传递机制提供了新的实验材料。  相似文献   

11.
The unique geochemical coupling of organic molecules and mineral CaCO3 provides a fluorescence signature detectable using conventional confocal scanning laser microscopy (CSLM). The surface microbial mats of open-water marine stromatolites (Bahamas) exist in a continuum of states ranging from a Type 1 (i.e., nonlithifying) to Type 2 (i.e., lithified micritic laminae present) to Type 3 (i.e., fused grain layer). An approach was developed here, that utilizes geographical information systems (GIS) and digital image analysis, coupled with CSLM to estimate concentrations of calcium carbonate precipitates in developing marine stromatolites. We propose that the area occupied by particles within each image can be used to estimate concentrations of precipitates. Fluorescent polymeric microbeads and bacteria were used to calibrate the approach. We used this approach to demonstrate that CaCO3 precipitates in lithifying layers were quantifiable and significantly different (p < 0.0001) from those in nonlithifying layers. The approach provided a useful tool for the unambiguous assessment of relative changes in microbial precipitates occurring over small ( μ m to mm) spatial scales, and that characterize the formation of lithified layers (micritic laminae) in open-water marine stromatolites.  相似文献   

12.
康博伦  袁媛  王珊  刘洪艳 《微生物学通报》2021,48(10):3497-3505
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。  相似文献   

13.
Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC), mesoporous carbon (MPC), bamboo biochar (BBC) and oak wood biochar (OBC)) were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the ππ electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively), compared to MPC (73.00 mg/g) and AC, indicating an ineffective potential for phenol removal from water.  相似文献   

14.
Microcosm studies investigated the effects of bioaugmentation with a mixed Dehalococcoides (Dhc)/Dehalobacter (Dhb) culture on biological enhanced reductive dechlorination for treatment of 1,1,1-trichloroethane (TCA) and chloroethenes in groundwater at three Danish sites. Microcosms were amended with lactate as electron donor and monitored over 600 days. Experimental variables included bioaugmentation, TCA concentration, and presence/absence of chloroethenes. Bioaugmented microcosms received a mixture of the Dhc culture KB-1 and Dhb culture ACT-3. To investigate effects of substrate concentration, microcosms were amended with various concentrations of chloroethanes (TCA or monochloroethane [CA]) and/or chloroethenes (tetrachloroethene [PCE], trichloroethene [TCE], or 1,1-dichloroethene [1,1-DCE]). Results showed that combined electron donor addition and bioaugmentation stimulated dechlorination of TCA and 1,1-dichloroethane (1,1-DCA) to CA, and dechlorination of PCE, TCE, 1,1-DCE and cDCE to ethane. Dechlorination of CA was not observed. Bioaugmentation improved the rate and extent of TCA and 1,1-DCA dechlorination at two sites, but did not accelerate dechlorination at a third site where geochemical conditions were reducing and Dhc and Dhb were indigenous. TCA at initial concentrations of 5 mg/L inhibited (i.e., slowed the rate of) TCA dechlorination, TCE dechlorination, donor fermentation, and methanogenesis. 1 mg/L TCA did not inhibit dechlorination of TCA, TCE or cDCE. Moreover, complete dechlorination of PCE to ethene was observed in the presence of 3.2 mg/L TCA. In contrast to some prior reports, these studies indicate that low part-per million levels of TCA (<3 mg/L) in aquifer systems do not inhibit dechlorination of PCE or TCE to ethene. In addition, the results show that co-bioaugmentation with Dhc and Dhb cultures can be an effective strategy for accelerating treatment of chloroethane/chloroethene mixtures in groundwater, with the exception that all currently known Dhc and Dhb cultures cannot treat CA.  相似文献   

15.
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997.  相似文献   

16.
Chen  Xingjuan  Song  Da  Xu  Jingjing  Sun  Guoping  Xu  Meiying 《Applied microbiology and biotechnology》2017,101(23):8595-8605

Increasing evidence has shown that the reaction of zero-valent iron [Fe(0)] by oxygen can produce strong oxidants and rapidly oxidize the tractable contaminants. However, Fe(0) is vulnerable to passivation in the presence of oxygen, which significantly decreases its surface reactivity towards the removal of refractory contaminants. Microorganisms capable of reducing ferric iron in the presence of oxygen are expected to overcome the limitation of Fe(0) passivation. However, no studies to date have shown that microorganisms are able to depassivate Fe(0) for the removal of recalcitrant compounds in the presence of oxygen. In this study, we demonstrated that the carotenoid-producing Sphingobium hydrophobicum C1 was able to significantly enhance the removal of deca-brominated diphenyl ether by depassivating Fe(0) and subsequently removing the newly formed metabolites under semi-aerobic conditions (> 4 mg/L oxygen). S. hydrophobicum C1 effectively depassivated Fe(0) and regenerated its reactivity by reducing ferric iron under semi-aerobic conditions. Some unique characteristics of S. hydrophobicum C1, including the presence of membrane-integrated carotenoids and certain cell proteins, were essential for the ferric iron reduction of S. hydrophobicum C1 in the presence of oxygen. Our results may provide new insights into the bioremediation of persistent pollutants and will contribute to future studies to enhance our understanding of microbial iron reduction.

  相似文献   

17.
Experiments with trichloroethylene-contaminated aquifer material demonstrated that TCE, cis-DCE, and VC were completely degraded with concurrent Fe(III) or Fe(III) and sulfate reduction when acetate was amended at stoichiometric concentration; competing TEAPs did not inhibit ethene production. Adding 10× more acetate did not increase the rate or extent of TCE reduction, but only increased methane production. Enrichment cultures demonstrated that ~90 μM TCE or ~22 μM VC was degraded primarily to ethene within 20 days with concurrent Fe(III) or Fe(III) + sulfate reduction. The dechlorination rates were comparable between the low and high acetate concentrations (0.36 vs 0.34 day?1, respectively), with a slightly slower rate in the 10× acetate amended incubations. Methane accumulated to 13.5 (±0.5) μmol/tube in the TCE-degrading incubations with 10× acetate, and only 1.4 (±0.1) μmol/tube with low acetate concentration. Methane accumulated to 16 (±1.5) μmol/tube in VC-degrading enrichment with 10× acetate and 2 (±0.1) μmol/tube with stoichiometric acetate. The estimated fraction of electrons distributed to methanogenesis increased substantially when excessive acetate was added. Quantitative PCR analysis indicated that 10× acetate did not enhance Dehalococcoides biomass but rather increased the methanogen abundance by nearly one order of magnitude compared to that with stoichiometric acetate. The data suggest that adding low levels of substrate may be equally if not more effective as high concentrations, without producing excessive methane. This has implications for field remediation efforts, in that adding excess electron donor may not benefit the reactions of interest, which in turn will increase treatment costs without direct benefit to the stakeholders.  相似文献   

18.
The objective of this study was to evaluate the dechlorination rate (from an initial concentration of 180 micromol l(-1)) and synergistic effect of combining commercial Fe(0) and autotrophic hydrogen-bacteria in the presence of hydrogen, during TCE degradation process. In the batch test, the treatment using Fe(0) in the presence of hydrogen (Fe(0)/H(2)), showed more effective dechlorination and less iron consumption than Fe(0) utilized only (Fe(0)/N(2)), meaning that catalytic degradation had promoted transformation of TCE, and the iron was protected by cathodic hydrogen. The combined use of Fe(0) and autotrophic hydrogen-bacteria was found to be more effective than did the individual exercise even though the hydrogen was insufficient during the batch test. By the analysis of XRPD, the crystal of FeS transformed by sulfate reducing bacteria (SRB) was detected on the surface of iron after the combined treatment. The synergistic impact was caused by FeS precipitates, which enhanced TCE degradation through catalytic dechlorination. Additionally, the dechlorination rate coefficient of the combined method in MFSB was 3.2-fold higher than that of iron particles individual use. Results from batch and MFSB experiments revealed that, the proposed combined method has the potential to become a cost-effective remediation technology for chlorinated-solvent contaminated site.  相似文献   

19.
【目的】本研究旨在从湖北地区镉污染严重的水稻根际土壤中,分离并鉴定能耐受高浓度的镉离子,同时具有镉去除能力和促进植物生长的细菌。【方法】采用稀释涂布平板和镉浓度梯度驯化的方法,成功分离出一株最高可耐受700 mg/L CdCl2且稳定生长的菌株,命名为Y01Z,并结合形态学、生理生化和分子生物学等方法对其进行鉴定。【结果】结果显示该菌株属于缺陷短波单胞菌(Brevundimonas diminuta),其最适生长条件为pH值7.0、温度30°C、NaCl浓度0.5%。扫描电镜和透射电镜分析显示,Y01Z通过拉长细胞尺寸以确保在高浓度镉处理下的生存和繁殖,同时能吸附镉离子,并将其输送到细胞内沉积。傅里叶变换红外光谱分析显示,Cd2+与细菌表面羧基、羟基、羰基和酰胺等官能团结合。经过104 h的培养,Y01Z菌株能够去除高达75%的总添加镉,从300 mg/L降至74.73 mg/L。此外,该菌株还具有促进植物生长的功能,如溶解磷,产生铵态氮和吲哚乙酸,并含有嗜铁载体等物质。【结论】本研究探讨了缺陷短波单胞菌Y01Z在耐镉、植物促生方面的性质,以及在修复镉污染土壤方面的应用前景。本研究为深...  相似文献   

20.
Phytoremediation of trichloroethylene (TCE) can be accomplished using fast-growing, deep-rooting trees. The most commonly used tree for phytoremediation of TCE has been the hybrid poplar. This study looks at native southeastern trees of the United States as alternatives to the use of hybrid poplar. The use of native trees for phytoremediation allows for simultaneous restoration of contaminated sites. A 2-mo, greenhouse-based study was conducted to determine if sycamore (Plantanus L.), eastern cottonwood (Populus deltoides), sweetgum (Liquidambar styraciflua L.), and willow (Salix sachalinensis) trees possess the ability to degrade TCE by assessing TCE metabolite formation in the plant tissue. In addition to the metabolic capabilities of each tree species, growth parameters were measured including change in height, water usage, total fresh weight of each tissue type, and calculated total leaf surface area. Willow trees had the greatest increase in height among all trees tested; however, at higher concentrations TCE inhibits growth. Sycamore trees had the highest overall leaf surface area and total biomass, which correlated with sycamore trees also having the highest average water usage over the course of the experiment. Carbon tubes used to sample transpiration gases from sycamore, sweetgum, and cottonwood trees did not contain detectable levels of TCE. Tenex sample collection tubes used to sample willow trees during TCE exposure showed average TCE concentrations of up to 0.354 ng TCE cm?2 leaf tissue. All exposed trees contained TCE in the root, stem, and leaf tissues. The concentration of TCE remaining in tissues at the conclusion of the experiment varied, with the highest levels found in the roots and the lowest levels found in the leaves. Metabolites were also observed in different tissue types of all trees tested. The highest concentrations of trichloroacetic acid were observed in the leaves of the sycamore trees and cottonwood trees. Based on the growth parameters tested and the ability to metabolize TCE, sycamore and native cottonwood species are the best candidates for phytoremediation from this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号