首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microbial-driven organic matter (OM) degradation is a cornerstone of benthic community functioning, but little is known about the relation between OM and community composition. Here we use Rhône prodelta sediments to test the hypothesis that OM quality and source are fundamental structuring factors for bacterial communities in benthic environments. Sampling was performed on four occasions corresponding to contrasting river-flow regimes, and bacterial communities from seven different depths were analyzed by pyrosequencing of 16S rRNA gene amplicons. The sediment matrix was characterized using over 20 environmental variables including bulk parameters (for example, total nitrogen, carbon, OM, porosity and particle size), as well as parameters describing the OM quality and source (for example, pigments, total lipids and amino acids and δ13C), and molecular-level biomarkers like fatty acids. Our results show that the variance of the microbial community was best explained by δ13C values, indicative of the OM source, and the proportion of saturated or polyunsaturated fatty acids, describing OM lability. These parameters were traced back to seasonal differences in the river flow, delivering OM of different quality and origin, and were directly associated with several frequent bacterial operational taxonomic units. However, the contextual parameters, which explained at most 17% of the variance, were not always the key for understanding the community assembly. Co-occurrence and phylogenetic diversity analysis indicated that bacteria–bacteria interactions were also significant. In conclusion, the drivers structuring the microbial community changed with time but remain closely linked with the river OM input.  相似文献   

2.
The response of a deep-water benthic microbial community to organic matter (OM) enrichment was studied in the unexplored region of the SW Cretan margin (E. Mediterranean). A food pulse of 0.5 g C m?2 was simulated by adding 13C-labelled diatoms to sediment cores retrieved from 1079 m depth. The diatom addition resulted in a significant increase in the sediment community oxygen consumption (SCOC). After 6 days, ~50 mg C m?2 of the added material was processed by the microbial community. The major carbon sink was respiration, which accounted for ~96% of the total processed material. The carbon uptake rate (12 mg C m?2 d?1) was considerably lower than previously published values in the E. Mediterranean at similar depths. The microbial community in our study site is distinct, as revealed by the unusually high presence of branched phospholipid fatty acids (PLFA). Previous studies have revealed that the slope under investigation may act as a conduit of OM from the shallow shelf to the deep basins, resulting in the prevalence of relatively refractory OM at mid-slope depths. We postulate that sedimentary processes affect the amount of bioavailable sedimentary OM and consequently the structure and physiological state of bacterial community in our study site. The distinct microbial community composition at our station compared to more stable adjacent slopes could explain the limited response of the microbial community to the addition of labile OM. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

3.
【目的】探究尕斯库勒盐湖生态系统中邻近水体对湖泊微生物的贡献。【方法】采集尕斯库勒盐湖区湖水、沉积物以及邻近的泉水、河水和盐田的水样,对其进行地球化学分析;通过16S rRNA基因的Illumina MiSeq高通量测序分析样品的微生物群落组成。【结果】尕斯库勒盐湖区水体和沉积物中的优势门是变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)和广古菌门(Euryarchaeota)。盐度和pH是影响尕斯库勒盐湖区群落组成的最主要环境因素。邻近水体对湖泊水体和沉积物的贡献分别为12.94%和7.53%。【结论】邻近水体对尕斯库勒盐湖微生物群落的贡献有限。  相似文献   

4.
5.
In this study, sediment samples were collected from Kabul River (Pakistan) and analyzed for heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). The physico-chemical characteristics were also determined which are known to influence the metal accumulation within the sediment matrix. Heavy metal concentrations (mg kg?1, dry weight basis) in the sediment were in the order of Zn > Cr > Ni > Pb > Cd. Heavy metal concentrations were found in moderately polluted category set by U. S. Environmental Protection Agency (USEPA). However, Cr and Ni concentrations exceeded the screening levels at the sites where a larger volume of industrial effluents enter into Kabul River. Higher concentrations of almost all the tested metals were detected at locations of greater industrial and sewage entry points. Sediment organic matter (OM) exhibited strong correlation with Pb (R2 = 0.80), Ni (R2 = 0.67) and Zn (R2 = 0.46), indicating that OM plays a significant role in metal retention and accumulation. The findings of this study showed that Kabul River is reasonably contaminated with selected heavy metals released from anthropogenic sources. In the study area, sewage discharge was the major source of heavy metals including Zn and Pb, which were observed at locations where sewage effluents enter into the river.  相似文献   

6.
The longitudinal distribution and seasonal fluctuation of phytoplankton communities was studied along the middle to lower part of a regulated river system (Nakdong River, Korea). Phytoplankton biomass decreased sharply in the middle part of the river (182 km upward the estuary dam), and then increased downstream reaching a maximum at the last sampling station (27 km upward the estuary dam). In contrast, there was little downstream fluctuation in species composition, irrespective of pronounced differences in nutrient concentrations (TN, TP, NO3, NH4, PO4) as well as in algal biomass. In the main river channel, small centric diatoms (Stephanodiscus hantzschii, Cyclotella meneghiniana) and pennate diatoms (Synedra, Fragilaria, Nitzschia) were dominant from winter to early spring (November–April). A mixed community of cryptomonads, centric and pennate diatoms, and coenobial greens (Pediastrum, Scenedesmus) was dominant in late spring (May–June). Blue-green algae (Anabaena, Microcystis, Oscillatoria) were dominant in the summer (July–September). A mid-summer Microcystis bloom occurred at all study sites during the dry season, when discharge was low, though the nutrient concentration varied in each study site. Nutrients appeared everywhere to be in excess of algal requirement and apparently did not influence markedly the downstream and seasonal phytoplankton compositional differences in this river.  相似文献   

7.
We compared extracellular enzyme activity (EEA) of microbial assemblages in river sediments at 447 sites along the Upper Mississippi, Missouri, and Ohio Rivers with sediment and water chemistry, atmospheric deposition of nitrogen and sulfate, and catchment land uses. The sites represented five unique river reaches—impounded and unimpounded reaches of the Upper Mississippi River, the upper and lower reaches of the Missouri River, and the entire Ohio River. Land use and river chemistry varied significantly between rivers and reaches. There was more agriculture in the two Upper Mississippi River reaches, and this was reflected in higher nutrient concentrations at sites in these reaches. EEA was highest in the two Upper Mississippi River reaches, followed by the lower Missouri River reach. EEA was generally lowest in the upper Missouri River reach. Canonical correlation analysis revealed a strong correlation between EEA and the suite of water and sediment chemistry variables, and the percent of the catchment in anthropogenically dominated land uses, including agriculture and urban development. Nutrient ratios of the waters and sediments suggested carbon (C), nitrogen (N), or phosphorus (P) limitation at a large number of sites in each reach. C-limitation was most pronounced in the unimpounded Mississippi River and lower Missouri River reaches; N-limitation was prevalent in the two Missouri River reaches; and P-limitation dominated the Ohio River. Linking microbial enzyme activities to regional-scale anthropogenic stressors in these large river ecosystems suggests that microbial enzyme regulation of carbon and nutrient dynamics may be sensitive indicators of anthropogenic nutrient and carbon loading.  相似文献   

8.
Indigenous Fe- and S-metabolizing bacteria play important roles both in the formation and the natural attenuation of acid mine drainage (AMD). Due to its low pH and Fe-S-rich waters, a river located in the Dabaoshan Mine area provides an ideal opportunity to study indigenous Fe- and S-metabolizing microbial communities and their roles in biogeochemical Fe and S cycling. In this work, water and sediment samples were collected from the river for physicochemical, mineralogical, and microbiological analyses. Illumina MiSeq sequencing indicated higher species richness in the sediment than in the water. Sequencing also found that Fe- and S-metabolizing bacteria were the dominant microorganisms in the heavily and moderately contaminated areas. Fe- and S-metabolizing bacteria found in the water were aerobes or facultative anaerobes, including Acidithiobacillus, Acidiphilium, Thiomonas, Gallionella, and Leptospirillum. Fe- and S-metabolizing bacteria found in the sediment belong to microaerobes, facultative anaerobes, or obligatory anaerobes, including Acidithiobacillus, Sulfobacillus, Thiomonas, Gallionella, Geobacter, Geothrix, and Clostridium. Among the dominant genera in the sediment, Geobacter and Geothrix were rarely detected in AMD-contaminated natural environments. Canonical correspondence analysis indicated that pH, S, and Fe concentration gradients were the most important factors in structuring the river microbial community. Moreover, a scheme explaining the biogeochemical Fe and S cycling is advanced in light of the Fe and S species distribution and the identified Fe- and S-metabolizing bacteria.  相似文献   

9.
胥娇  李强 《微生物学报》2023,63(6):2153-2172
碳酸盐岩经风化作用并在地形、植被、气候、时间及生物等因素的影响下逐渐演替出黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土。【目的】研究不同演替阶段石灰土颗粒态有机质(particulate organic matter, POM)和矿物结合态有机质(mineral-associated organic matter, MAOM)的微生物群落特征,为岩溶土壤有机质稳定机制研究提供理论依据。【方法】以广西弄岗国家级自然保护区的黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土为研究对象,运用湿筛法将土壤有机质(soil organic matter, SOM)分为POM和MAOM,分析其理化性质以及微生物群落特征。【结果】石灰土演替过程中POM和MAOM的有机碳、总氮、交换性钙含量均呈下降趋势,且MAOM的C/N均大于POM,POM的C/P均大于MAOM。细菌α多样性在黑色石灰土POM和MAOM中最高,且四类石灰土MAOM的真菌多样性比POM要高。Acidobacteria、Proteobacteria、Ascomycota均为石灰土演替过程中POM和MAOM的优势菌门。总磷是影响石灰土演替过...  相似文献   

10.
Lake and adjoining river ecosystems are ecologically and economically valuable and are heavily threatened by anthropogenic activities. Determining the inherent capacity of ecosystems for polycyclic aromatic hydrocarbon (PAH) biodegradation can help quantify environmental impacts on the functioning of ecosystems, especially on that of the microbial community. Here, PAH biodegradation potential was compared between sediments collected from a lake bay (LS) and an adjoining river (RS) ecosystem. Microbial community composition, function, and their co-occurrence patterns were also explored. In the RS, the biodegradation rates (KD) of pyrene or PAH were almost two orders of magnitude higher than those in the LS. Sediment functional community structure and network interactions were dramatically different between the LS and RS. Although PAH degradation genes (p450aro, quinoline, and qorl) were detected in the LS, the community activity of these genes needed to be biostimulated for accelerated bioremediation. In contrast, functional communities in the RS were capable of spontaneous natural attenuation of PAH. The degradation of PAH in the RS also required coordinated response of the complex functional community. Taken together, elucidating functions and network interactions in sediment microbial communities and their responses to environmental changes are very important for the bioremediation of anthropogenic toxic contaminants.  相似文献   

11.
The possible links between river flow, zooplankton abundance and the responses of zooplanktivorous fishes to physico‐chemical and food resource changes are assessed. To this end, the seasonal abundance, distribution and diet of the estuarine round‐herring Gilchristella aestuaria and Cape silverside Atherina breviceps were studied in the Kariega Estuary. Spatio‐temporal differences were determined for selected physico‐chemical variables, zooplankton abundance and zooplanktivorous fish abundance and distribution. Results indicated that, following a river flood event in winter (>30 m3 s?1), altered physico‐chemical conditions occurred throughout the estuary and depressed zooplankton stocks. Abundance of G. aestuaria was highest in spring, with this species dominant in the upper and middle zones of the estuary, while A. breviceps was dominant in summer and preferred the middle and lower zones. The catch per unit of effort of both zooplanktivores also declined significantly following the flooding, thus suggesting that these fishes are reliant on zooplankton as a primary food source for healthy populations. Copepods dominated the stomach contents of both fish species, indicating a potential for strong interspecific competition for food, particularly in the middle reaches. Temporal differences were evident in dietary overlap between the two zooplanktivorous fish species and were correlated with river flow, zooplankton availability and fish distribution. The findings of this study emphasize the close trophic linkages between zooplankton and zooplanktivorous fishes under changing estuarine environmental conditions, particularly river flow and provide important baseline information for similar studies elsewhere in South Africa and the rest of the world.  相似文献   

12.
Despite increasing recognition of storm-induced organic carbon (C) export as a significant loss from the terrestrial C balance, little is known about the biodegradation and chemical transformation of particulate organic carbon (POC) in mountainous river systems. We combined analyses of C isotopes, solution-state 1H NMR, and lipid biomarkers with biodegradable dissolved organic C (BDOC) measurements to investigate downstream changes of POC composition and biodegradability at a mountainous, mixed land-use watershed in South Korea. Water and suspended sediment (SS) samples were collected in a forested headwater stream, a downstream agricultural stream, and two downstream rivers during peak flow periods of four storm events, using either sequential grab sampling from the headwater stream to the most downstream river within a few hours around the peak flow or sediment samplers deployed during the whole storm event. DOC concentrations exhibited relatively small changes across sites, whereas POC concentrations were highest in the agricultural stream, and tapered along downstream reaches. The δ13C and δ15N of SS in the agricultural stream were distinct from up- and downstream signatures and similar to those for erosion source soils and lake bottom sediment, although increases in radiocarbon age indicated continuous compositional changes toward the lake. 1H NMR spectra of SS and deposited sediment exhibited downstream decreases in carbohydrates and lignin but enrichment of organic structures related to microbial proteins and plant wax. The downstream sediments had more microbial n-alkanes and lipid markers indicating anthropogenic origin such as coprostanol compared to the forest soil n-alkanes dominated by plant wax. While the BDOC concentrations of filtered waters differed little between sites, the BDOC concentrations and protein- to humic-like fluorescence ratios of DOC leached from SS during a 13-day incubation were higher in downstream rivers, pointing to contribution of labile POC components to the enhanced biodegradation. Overall, inputs of microbial and anthropogenic origin, in interplay with deposition and mineralization, appear to substantially alter POC composition and biodegradability during downstream transport, raising a question on the conventional view of mountainous river systems as a passive conduit of storm pulses of POC.  相似文献   

13.
Soil organic matter (OM) can be stabilized against decomposition by association with minerals, by its inherent recalcitrance and by occlusion in aggregates. However, the relative contribution of these factors to OM stabilization is yet unknown. We analyzed pool size and isotopic composition (14C, 13C) of mineral-protected and recalcitrant OM in 12 subsurface horizons from 10 acidic forest soils. The results were related to properties of the mineral phase and to OM composition as revealed by CPMAS 13C-NMR and CuO oxidation. Stable OM was defined as that material which survived treatment of soils with 6 wt% sodium hypochlorite (NaOCl). Mineral-protected OM was extracted by subsequent dissolution of minerals by 10% hydrofluoric acid (HF). Organic matter resistant against NaOCl and insoluble in HF was considered as recalcitrant OM. Hypochlorite removed primarily 14C-modern OM. Of the stable organic carbon (OC), amounting to 2.4–20.6 g kg−1 soil, mineral dissolution released on average 73%. Poorly crystalline Fe and Al phases (Feo, Alo) and crystalline Fe oxides (Fed−o) explained 86% of the variability of mineral-protected OC. Atomic Cp/(Fe+Al)p ratios of 1.3–6.5 suggest that a portion of stable OM was associated with polymeric Fe and Al species. Recalcitrant OC (0.4–6.5 g kg−1 soil) contributed on average 27% to stable OC and the amount was not correlated with any mineralogical property. Recalcitrant OC had lower Δ14C and δ13C values than mineral-protected OC and was mainly composed of aliphatic (56%) and O-alkyl (13%) C moieties. Lignin phenols were only present in small amounts in either mineral-protected or recalcitrant OM (mean 4.3 and 0.2 g kg−1 OC). The results confirm that stabilization of OM by interaction with poorly crystalline minerals and polymeric metal species is the most important mechanism for preservation of OM in these acid subsoil horizons.  相似文献   

14.
The hyporheic zone of a river is characterized by being nonphotic, exhibiting chemical/redox gradients, and having a heterotrophic food web based on the consumption of organic carbon entrained from surface waters. Hyporheic microbial communities constitute the base of food webs in these environments and are important for maintaining a functioning lotic ecosystem. While microbial communities of rivers dominated by fine-grained sediments are relatively well studied, little is known about the structure and seasonal dynamics of microbial communities inhabiting the predominantly gravel and cobble hyporheic zones of rivers of the western United States. Here, we present the first molecular analysis of hyporheic microbial communities of three different stream types (based on mean base discharge, substratum type, and drainage area), in Montana. Utilizing 16S rDNA phylogeny, DGGE pattern analysis, and qPCR, we have analyzed the prokaryotic communities living on the 1.7 to 2.36 mm grain-size fraction of hyporheic sediments from three separate riffles in each stream. DGGE analysis showed clear seasonal community patterns, indicated similar community composition between different riffles within a stream (95.6–96.6% similarity), and allowed differentiation between communities in different streams. Each river supported a unique complement of species; however, several phylogenetic groups were conserved between all three streams including Pseudomonads and members of the genera Aquabacterium, Rhodoferax, Hyphomicrobium, and Pirellula. Each group showed pronounced seasonal trends in abundance, with peaks during the Fall. The Hyphomicrobium group was numerically dominant throughout the year in all three streams. This work provides a framework for investigating the effects of various environmental factors and anthropogenic effects on microbial communities inhabiting the hyporheic zone.  相似文献   

15.
官厅水库消落带土壤有机质空间分布特征   总被引:7,自引:0,他引:7  
宫兆宁  李洪  阿多  程庆文 《生态学报》2017,37(24):8336-8347
消落带土壤由于在水陆交替的特殊生境和复杂的地球化学共同作用下形成,具有独特的理化性质和生态功能。各营养盐含量在时间和空间上具有较高的变异性,土壤中有机质的分布及迁移和转化均受到复杂的影响。针对官厅水库流域上游妫水河段消落带,选择典型消落带落水区,对该区土壤有机质含量的时空分布特征进行研究。结果表明:1)研究区消落带土壤有机质含量较为贫瘠,变化范围在1.64-26g/kg之间,平均值仅为13.16g/kg,变异系数达50.59%。说明消落带由于季节性干湿交替的特殊水文条件的影响,土壤养分的分布具有较高的空间异质性。淹水频繁区有机质含量平均值为15.74g/kg,高于长期出露区的10.12g/kg,且变异系数为41.38%,小于长期出露区的54.98%。说明淹水频繁区对土壤养分的持留能力更强,且周期性的淹水条件使得研究区近岸具有相似的生境类型,不同采样点土壤有机质含量的差异相对较小。2)不同植物群落下,芦苇和香蒲群落土壤有机质含量最高,平均值为17.08g/kg;含量最低的是以小叶杨和白羊草为主的中旱生植物带,平均值为9.12g/kg;其次是酸模叶蓼、大刺儿菜为优势物种的湿生植物带,土壤有机质含量平均值为15.49g/kg。3)不同土壤层次有机质含量差异较大,总体变化趋势均由表层向下逐渐减少,各层之间体现出显著差异性(P0.05)。研究区土壤C/N变化范围在1.64-18.95,平均值为8.95。说明研究区土壤碳氮比相对较低,有机质的腐殖化程度较高,且长期出露区土壤有机质更容易发生分解,C的累积速度远小于N。土壤C/N垂直分布大致呈先增大后减小趋势,在30cm处达到最大值,而后随着土壤深度的增加逐渐减小。4)消落带土壤有机质分布的影响因素分析中,土壤有机质与全磷呈极显著正相关,相关系数为0.62(P0.01);与土壤全氮和C/N呈显著正相关(R=0.57,0.60;P0.05)。这说明研究区土壤全磷、全氮、C/N和有机质明显具有相同的变化趋势,和有机质存在相互影响。其次,土壤有机质和湿度在呈显著负相关(R=-0.51;P0.05),表明研究区土壤湿度对有机质含量具有显著的影响。气候因子中,温度对研究区土壤有机质的分布具有显著的影响,相关系数为-0.51(P0.05)。植被因子中,植被覆盖度和土壤有机质含量呈显著正相关,相关系数为0.64,表明植被因子也是影响土壤有机质分布的重要因素之一。  相似文献   

16.
【目的】探究高寒湿地逆行演替对土壤性质与微生物群落结构的影响。【方法】以新疆巴音布鲁克天鹅湖高寒湿地为研究对象,依托逆行演替典型样带(沼泽-沼泽化草甸-草甸),利用高通量测序技术分析各演替区土壤微生物群落结构。【结果】高寒湿地逆行演替改变了土壤微生物在分类操作单元(operational taxonomic unit,OTU)水平上的物种组成,致使草甸区的微生物ACE、Chao1、Simpson、Shannon多样性指数显著低于沼泽区和沼泽化草甸区(P<0.05);随着演替发生,变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)、子囊菌门(Ascomycota)的相对丰度均减少,放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadetes)、担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)的相对丰度增加;主坐标法分析(principal coordinates analysis,PCoA)排序分析显示,土壤微生物群落在各逆行演替都出现不同程度的离散...  相似文献   

17.
伊洛河流域外来草本植物分布格局   总被引:3,自引:1,他引:2  
外来生物入侵及其防治已经成为生态学关注的重点和热点问题.目前的研究主要集中在外来入侵种上,然而入侵种仅占外来种中很少一部分,因此,研究外来种现有分布格局对研究生物入侵及其防治有重要意义.以伊洛河流域草本植物群落中的外来种为对象,沿河从河源地到入黄河口选取典型样地,在调查流域内草本植物群落中物种组成的基础上选取外来种,并对外来种种类组成及其分布格局进行研究.结果表明:流域内有外来草本植物27种,分属于15科,种类较多的科为菊科、苋科和豆科;引入方式以有意引种为主.流域横向不同生境间,河滩地在水流的养分富集、季节性洪水物理干扰及人为活动扰动作用下,呈现出受外来种分布较多,而受人类活动扰动最强且营养丰富的农田分布较小的分布格局;纵向环境梯度下,上游河源山地属于自然植被区,人为干扰较轻,且受外来种影响较小;中游丘陵区从自然生态系统向农业生态系统的过渡区域,人类活动的扰动有所加强;下游平原农业区,人类活动强烈,区域内以人工生态系统为主,群落物种组成简单但受外来种影响最大,受自然环境和人类活动的双重影响.不同物种在不同生境间差异明显,其中,小蓬草、钻叶紫菀和反枝苋广泛分布于3种生境中.总体上,伊洛河外来草本植物分布格局在自然因素的基础上强烈受人为因素的影响,呈现出从上游到下游逐渐增多的趋势.  相似文献   

18.
The “Outwelling Theory” states that salt marshes play a major role in exporting production to adjacent estuarine and coastal ecosystems. However, it has been found that some marshes act as net importers instead of net exporters of organic matter and nutrients. Once we include mangroves and refine the analysis to comprehend bacterioplankton, organic and stable isotope tracers, the picture became, more complex, making room for a revival of the outwelling idea. The exchanges between the Castro Marim salt marsh and the main estuary were tentatively established determining periodically, in a selected cross-section, the concentrations of TSS, FSS, VSS, NH4, NO2, NO3, NKjeldhal, SiO4, PO4, TDP, Chlorophyll a and Pheopigments, measuring their fluxes along tidal cycles and computing the corresponding budgets. Apparently, the sedimentary behaviour of the marsh will be close to equilibrium during the period of study. However, it will import mainly inert matter and export mainly organic matter in the same period. Moreover, extrapolating these results to the entire Guadiana salt marshes, the exchanges of sediment do not seem to be significant. Particularly, the marshes will not trap a significantly amount sediment transported by the main river (0.5%). It also seems to follow, that in a general way, the Guadiana salt marshes might have a more significant role than was anticipated in the system economy of OM and nutrients and their outwelling to coastal waters, assuring outputs that could amount to something like 6% of the river load of N, 1.2% of the river load of P, and 20-57% of the river load of TOC, for an average year, and 42% of the river load of N and 35% of the river load of P in a dry year. These findings suggest that a more detailed investigation, over an extended period of time, is certainly worthwhile.  相似文献   

19.
Faecal contamination is one of the major factors affecting biological water quality. In this study, we investigated microbial taxonomic diversity of faecally polluted lotic ecosystems in Norway. These ecosystems comprise tributaries of drinking water reservoirs with moderate and high faecal contamination levels, an urban creek exposed to extremely high faecal pollution and a rural creek that was the least faecally polluted. The faecal water contamination had both anthropogenic and zoogenic origins identified through quantitative microbial source tracking applying host-specific Bacteroidales 16S rRNA genetic markers. The microbial community composition revealed that Proteobacteria and Bacteroidetes (70–90% relative abundance) were the most dominant bacterial phyla, followed by Firmicutes, especially in waters exposed to anthropogenic faecal contamination. The core archaeal community consisted of Parvarchaeota (mainly in the tributaries of drinking water reservoirs) and Crenarchaeota (in the rural creek). The aquatic microbial diversity was substantially reduced in water with severe faecal contamination. In addition, the community compositions diverge between waters with dominant anthropogenic or zoogenic pollution origins. These findings present novel interpretations of the effect of anthropo-zoogenic faecal water contamination on microbial diversity in lotic ecosystems.  相似文献   

20.
Permafrost‐affected soils of the northern circumpolar region represent 50% of the terrestrial soil organic carbon (SOC) reservoir and are most strongly affected by climatic change. There is growing concern that this vast SOC pool could transition from a net C sink to a source. But so far little is known on how the organic matter (OM) in permafrost soils will respond in a warming future, which is governed by OM composition and possible stabilization mechanisms. To investigate if and how SOC in the active layer and adjacent permafrost is protected against degradation, we employed density fractionation to separate differently stabilized SOM fractions. We studied the quantity and quality of OM in different compartments using elemental analysis, 13C solid‐phase nuclear magnetic resonance (13C‐NMR) spectroscopy, and 14C analyses. The soil samples were derived from 16 cores from drained thaw lake basins, ranging from 0 to 5500 years of age, representing a unique series of developing Arctic soils over time. The normalized SOC stocks ranged between 35.5 and 86.2 kg SOC m?3, with the major amount of SOC located in the active layers. The SOC stock is dominated by large amounts of particulate organic matter (POM), whereas mineral‐associated OM especially in older soils is of minor importance on a mass basis. We show that tremendous amounts of over 25 kg OC per square meter are stored as presumably easily degradable OM rich in carbohydrates. Only about 10 kg OC per square meter is present as presumably more stable, mineral‐associated OC. Significant amounts of the easily degradable, carbohydrate‐rich OM are preserved in the yet permanently frozen soil below the permafrost table. Forced by global warming, this vast labile OM pool could soon become available for microbial degradation due to the continuous deepening of the annually thawing active layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号