首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7–12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May–September 2011 using climate‐controlled chambers. A substrate‐induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20–30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N‐only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate‐induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2. The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N‐only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N‐P/K colimited rather than N‐limited. Negative effects of further N‐only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat‐forming Sphagnum.  相似文献   

2.
Abstract We examined aerobic and anaerobic microbial carbon dioxide (CO2) and methane (CH4) exchange in peat samples representing different profiles at natural, mined, mined-abandoned, and restored northern peatlands and characterized the nutrient and substrate chemistry and microbial biomass of these soils. Mining and abandonment led to reduced nutrient and substrate availability and occasionally drier conditions in surface peat resulting in a drastic reduction in CO2 and CH4 production, in agreement with previous studies. Owing mainly to wetter conditions, CH4 production and oxidation were faster in restored block-cut than natural sites, whereas in one restored site, increased substrate and nutrient availability led to much more rapid rates of CO2 production. Our work in restored block-cut sites compliments that in vacuum-harvested peatlands undergoing more recent active restoration attempts. The sites we examined covered a large range of soil C substrate quality, nutrient availability, microbial biomass, and microbial activities, allowing us to draw general conclusions about controls on microbial CO2 and CH4 dynamics using stepwise regression analysis among all sites and soil depths. Aerobic and anaerobic decomposition of peat was constrained by organic matter quality, particularly phosphorus (P) and carbon (C) chemistry, and closely linked to the size of the microbial biomass supported by these limiting resources. Methane production was more dominantly controlled by field moisture content (a proxy for anaerobism), even after 20 days of anaerobic laboratory incubation, and to a lesser extent by C substrate availability. As methanogens likely represented only a small proportion of the total microbial biomass, there were no links between total microbial biomass and CH4 production. Methane oxidation was controlled by the same factors influencing CH4 production, leading to the conclusion that CH4 oxidation is primarily controlled by substrate (that is, CH4) availability. Although restoring hydrology similar to natural sites may re-establish CH4 dynamics, there is geographic or site-specific variability in the ability to restore peat decomposition dynamics.  相似文献   

3.
Tropical peatlands play an important role in the global carbon cycling but little is known about factors regulating carbon dioxide (CO2) and methane (CH4) fluxes from these ecosystems. Here, we test the hypotheses that (i) CO2 and CH4 are produced mainly from surface peat and (ii) that the contribution of subsurface peat to net C emissions is governed by substrate availability. To achieve this, in situ and ex situ CO2 and CH4 fluxes were determined throughout the peat profiles under three vegetation types along a nutrient gradient in a tropical ombrotrophic peatland in Panama. The peat was also characterized with respect to its organic composition using 13C solid state cross‐polarization magic‐angle spinning nuclear magnetic resonance spectroscopy. Deep peat contributed substantially to CO2 effluxes both with respect to actual in situ and potential ex situ fluxes. CH4 was produced throughout the peat profile with distinct subsurface peaks, but net emission was limited by oxidation in the surface layers. CO2 and CH4 production were strongly substrate‐limited and a large proportion of the variance in their production (30% and 63%, respectively) was related to the quantity of carbohydrates in the peat. Furthermore, CO2 and CH4 production differed between vegetation types, suggesting that the quality of plant‐derived carbon inputs is an important driver of trace gas production throughout the peat profile. We conclude that the production of both CO2 and CH4 from subsurface peat is a substantial component of the net efflux of these gases, but that gas production through the peat profile is regulated in part by the degree of decomposition of the peat.  相似文献   

4.
The impact of elevated CO2 on terrestrial ecosystem C balance, both in sign or magnitude, is not clear because the resulting alterations in C input, plant nutrient demand and water use efficiency often have contrasting impacts on microbial decomposition processes. One major source of uncertainty stems from the impact of elevated CO2 on N availability to plants and microbes. We examined the effects of atmospheric CO2 enrichment (ambient+370 μmol mol?1) on plant and microbial N acquisition in two different mesocosm experiments, using model plant species of annual grasses of Avena barbata and A. fatua, respectively. The A. barbata experiment was conducted in a N‐poor sandy loam and the A. fatua experiment was on a N‐rich clayey loam. Plant–microbial N partitioning was examined through determining the distribution of a 15N tracer. In the A. barbata experiment, 15N tracer was introduced to a field labeling experiment in the previous year so that 15N predominantly existed in nonextractable soil pools. In the A. fatua experiment, 15N was introduced in a mineral solution [(15NH4)2SO4 solution] during the growing season of A. fatua. Results of both N budget and 15N tracer analyses indicated that elevated CO2 increased plant N acquisition from the soil. In the A. barbata experiment, elevated CO2 increased plant biomass N by ca. 10% but there was no corresponding decrease in soil extractable N, suggesting that plants might have obtained N from the nonextractable organic N pool because of enhanced microbial activity. In the A. fatua experiment, however, the CO2‐led increase in plant biomass N was statistically equal to the reduction in soil extractable N. Although atmospheric CO2 enrichment enhanced microbial biomass C under A. barbata or microbial activity (respiration) under A. fatua, it had no significant effect on microbial biomass N in either experiment. Elevated CO2 increased the colonization of A. fatua roots by arbuscular mycorrhizal fungi, which coincided with the enhancement of plant competitiveness for soluble soil N. Together, these results suggest that elevated CO2 may tighten N cycling through facilitating plant N acquisition. However, it is unknown to what degree results from these short‐term microcosm experiments can be extrapolated to field conditions. Long‐term studies in less‐disturbed soils are needed to determine whether CO2‐enhancement of plant N acquisition can significantly relieve N limitation over plant growth in an elevated CO2 environment.  相似文献   

5.
A scrub‐oak woodland has maintained higher aboveground biomass accumulation after 11 years of atmospheric CO2 enrichment (ambient +350 μmol CO2 mol?1), despite the expectation of strong nitrogen (N) limitation at the site. We hypothesized that changes in plant available N and exploitation of deep sources of inorganic N in soils have sustained greater growth at elevated CO2. We employed a suite of assays performed in the sixth and 11th year of a CO2 enrichment experiment designed to assess soil N dynamics and N availability in the entire soil profile. In the 11th year, we found no differences in gross N flux, but significantly greater microbial respiration (P≤0.01) at elevated CO2. Elevated CO2 lowered extractable inorganic N concentrations (P=0.096) considering the whole soil profile (0–190 cm). Conversely, potential net N mineralization, although not significant in considering the entire profile (P=0.460), tended to be greater at elevated CO2. Ion‐exchange resins placed in the soil profile for approximately 1 year revealed that potential N availability at the water table was almost 3 × greater than found elsewhere in the profile, and we found direct evidence using a 15N tracer study that plants took up N from the water table. Increased microbial respiration and shorter mean residence times of inorganic N at shallower depths suggests that enhanced SOM decomposition may promote a sustained supply of inorganic N at elevated CO2. Deep soil N availability at the water table is considerable, and provides a readily available source of N for plant uptake. Increased plant growth at elevated CO2 in this ecosystem may be sustained through greater inorganic N supply from shallow soils and N uptake from deep soil.  相似文献   

6.
Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h?1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h?1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h?1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.  相似文献   

7.
A major uncertainty in predicting long-term ecosystem C balance is whether stimulation of net primary production will be sustained in future atmospheric CO2 scenarios. Immobilization of nutrients (N in particular) in plant biomass and soil organic matter (SOM) provides negative feedbacks to plant growth and may lead to progressive N limitation (PNL) of plant response to CO2 enrichment. Soil microbes mediate N availability to plants by controlling litter decomposition and N transformations as well as dominating biological N fixation. CO2-induced changes in C inputs, plant nutrient demand and water use efficiency often have interactive and contrasting effects on microbes and microbially mediated N processes. One critical question is whether CO2-induced N accumulation in plant biomass and SOM will result in N limitation of microbes and subsequently cause them to obtain N from alternative sources or to alter the ecosystem N balance. We reviewed the experimental results that examined elevated CO2 effects on microbial parameters, focusing on those published since 2000. These results in general show that increased C inputs dominate the CO2 impact on microbes, microbial activities and their subsequent controls over ecosystem N dynamics, potentially enhancing microbial N acquisition and ecosystem N retention. We reason that microbial mediation of N availability for plants under future CO2 scenarios will strongly depend on the initial ecosystem N status, and the nature and magnitude of external N inputs. Consequently, microbial processes that exert critical controls over long-term N availability for plants would be ecosystem-specific. The challenge remains to quantify CO2-induced changes in these processes, and to extrapolate the results from short-term studies with step-up CO2 increases to native ecosystems that are already experiencing gradual changes in the CO2 concentration.  相似文献   

8.
The free air carbon dioxide enrichment (FACE) and N deposition experiments on four ombrotrophic bogs in Finland, Sweden, the Netherlands and Switzerland, revealed that after three years of treatment: (1) elevated atmospheric CO2 concentration had no significant effect on the biomass growth of Sphagnum and vascular species; and (2) increased N deposition reduced Sphagnum growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum, while vascular plant biomass growth was not affected. This paper focuses on water chemistry, plant nutrient content, and litter decomposition rates. Potassium limitation, or low supply of K and P, may have prevented a significant increase of Sphagnum growth under elevated CO2 and N deposition. Vascular plant growth under elevated CO2 and N deposition was also limited by K, or by K in combination with P or N (N in CO2 experiment). Elevated CO2 and N deposition had no effect on decomposition rates of Sphagnum and vascular plant litter. Aside from a possible effect of N deposition on light competition between species, we expect that elevated atmospheric CO2 and N deposition concentrations will not affect Sphagnum and vascular plant growth in bogs of north‐west Europe due to K‐, or K in combination with N‐ or P‐, limited growth. For the same reason we expect no effect of elevated CO2 and N deposition on litter decomposition. Net primary production of raised ombrotrophic bogs that are at or close to steady state, is regulated by input of nutrients through atmospheric deposition. Therefore, we hypothesize that the expected increase of plant growth under elevated CO2 and N deposition is diminished by current levels of K (and to some extent P and N) in atmospheric deposition.  相似文献   

9.
We measured net ecosystem CO2 exchange (NEE), plant biomass and growth, species composition, peat microclimate, and litter decomposition in a fertilization experiment at Mer Bleue Bog, Ottawa, Ontario. The bog is located in the zone with the highest atmospheric nitrogen deposition for Canada, estimated at 0.8–1.2 g N m−2 yr−1 (wet deposition as NH4 and NO3). To establish the effect of nutrient addition on this ecosystem, we fertilized the bog with six treatments involving the application of 1.6–6 g N m−2 yr−1 (as NH4NO3), with and without P and K, in triplicate 3 m × 3 m plots. The initial 5–6 years have shown a loss of first Sphagnum, then Polytrichum mosses, and an increase in vascular plant biomass and leaf area index. Analyses of NEE, measured in situ with climate‐controlled chambers, indicate that contrary to expectations, the treatments with the highest levels of nutrient addition showed lower rates of maximum NEE and gross photosynthesis, but little change in ecosystem respiration after 5 years. Although shrub biomass and leaf area increased in the high nutrient plots, loss of moss photosynthesis owing to nutrient toxicity, increased vascular plant shading and greater litter accumulation contributed to the lower levels of CO2 uptake. Our study highlights the importance of long‐term experiments as we did not observe lower NEE until the fifth year of the experiment. However, this may be a transient response as the treatment plots continue to change. Higher levels of nutrients may cause changes in plant composition and productivity and decrease the ability of peatlands to sequester CO2 from the atmosphere.  相似文献   

10.
Canopy N and P dynamics of a southeastern US pine forest under elevated CO2   总被引:2,自引:1,他引:1  
Forest production is strongly nutrient limited throughout the southeastern US. If nutrient limitations constrain plant acquisition of essential resources under elevated CO2, reductions in the mass or nutrient content of forest canopies could constrain C assimilation from the atmosphere. We tested this idea by quantifying canopy biomass, foliar concentrations of N and P, and the total quantity of N and P in a loblolly pine (Pinus taeda) canopy subject to 4 years of free-air CO2 enrichment. We also used N:P ratios to detect N versus P limitation to primary production under elevated CO2. Canopy biomass was significantly higher under elevated CO2 during the first 4 years of this experiment. Elevated CO2 significantly reduced the concentration of N in loblolly pine foliage (5% relative to ambient CO2) but not P. Despite the slight reduction foliage N concentrations, there were significant increases in canopy N and P contents under elevated CO2. Foliar N:P ratios were not altered by elevated CO2 and were within a range suggesting forest production is N limited not P limited. Despite the clear limitation of NPP by N under ambient and elevated CO2 at this site, there is no evidence that the mass of N or P in the canopy is declining through the first 4 years of CO2 fumigation. As a consequence, whole-canopy C assimilation is strongly stimulated by elevated CO2 making this forest a larger net C sink under elevated CO2 than under ambient CO2. We discuss the potential for future decreases in canopy nutrient content as a result of limited changes in the size of the plant-available pools of N under elevated CO2.  相似文献   

11.
Summary Samples of peat and mor humus were treated with CHCl3 to kill microbial cells and the amounts of C as CO2, N as soluble- and mineral-N, and P as inorganic-P released by the treatment were compared with estimates of the microbial biomass by the Anderson and Domsch test and ATP determination. Increased amounts of soluble-N and inorganic-P, extracted with 1M KCl and 0.01M CaCl2 respectively, were detected immediately after the fumigation treatment. However, the subsequent rates of production of CO2–C and mineral-N measured during a 10-day incubation period at 25°C were low and variable, resulting in anomalously low estimates of microbial biomass. The flush of inorganic-P was more consistent and, in mor humus, generally related to biomass-C as measured by the Anderson and Domsch test.  相似文献   

12.
The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer.  相似文献   

13.
Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (?0.5 to ?10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil.  相似文献   

14.
We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO2 and nitrogen (N) deposition treatments. Because elevated CO2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO2 and ambient N, or ambient CO2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO2. In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.  相似文献   

15.
Despite the importance of understanding controls on microbial carbon (C) mineralization in peat soils, the role of vascular plant root exudates is still unclear. To determine whether root exudates could stimulate enhanced decomposition of peat, we utilized an in-vitro method involving the addition of a solution similar to root exudates (6 glucose-C: 2 citrate-C: 2 amino acid-C, at 3 addition levels) to peat, incubating the mixture and measuring CO2 produced over 20 d and microbial biomass and dissolved organic carbon (DOC) at the end of the incubation. We defined priming as inorganic C (IC) production (CO2 + calculated dissolved inorganic C) during the incubation being greater than that attributed to the control peat plus the added C. An addition level of 0.083 mg C g?1 dry peat, estimated to represent root exudation over one 12-h sunny day in a bog, caused an enhancement in IC production that exceeded that produced in the controls and the amount of added C after 8 d, with rates levelling to control values after 15 d. At the end of the incubation nearly 3 times the amount added C had been mineralized, relative to the control, however this represented only 4% of total microbial respiration in the controls. Although the priming effect pattern appeared to be real throughout repeated measurements in our experiments, the statistical probabilities were not always large due to high variability in background CO2 production levels. Given the observed long lag-times and overall small magnitude and large variability in observed effects, we conclude that although priming of decomposition appears to occur in peatlands, it likely has only a minor overall impact on net C loss to the atmosphere.  相似文献   

16.
1. While anthropogenic stream acidification is known to lower species diversity and impair decomposition, its effects on nutrient cycling remain unclear. The influence of acid‐stress on microbial physiology can have implications for carbon (C) and nitrogen (N) cycles, linking environmental conditions to ecosystem processes. 2. We collected leaf biofilms from streams spanning a gradient of pH (5.1–6.7), related to chronic acidification, to investigate the relationship between qCO2 (biomass‐specific respiration; mg CO2‐C g?1 fungal C h?1), a known indicator of stress, and biomass‐specific N uptake (μg NH4‐N mg?1 fungal biomass h?1) at two levels of N availability (25 and 100 μg NH4‐N L?1) in experimental microcosms. 3. Strong patterns of increasing qCO2 (i.e. increasing stress) and increasing microbial N uptake were observed with a decrease in ambient (i.e. chronic) stream pH at both levels of N availability. However, fungal biomass was lower on leaves from more acidic streams, resulting in lower overall respiration and N uptake when rates were standardized by leaf biomass. 4. Results suggest that chronic acidification decreases fungal metabolic efficiency because, under acid conditions, these organisms allocate more resources to maintenance and survival and increase their removal of N, possibly via increased exoenzyme production. At the same time, greater N availability enhanced N uptake without influencing CO2 production, implying increased growth efficiency. 5. At the ecosystem level, reductions in growth because of chronic acidification reduce microbial biomass and may impair decomposition and N uptake; however, in systems where N is initially scarce, increased N availability may alleviate these effects. Ecosystem response to chronic stressors may be better understood by a greater focus on microbial physiology, coupled elemental cycling, and responses across several scales of investigation.  相似文献   

17.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

18.
Anthropogenic nitrogen (N) loading has the potential to affect plant community structure and function, and the carbon dioxide (CO2) sink of peatlands. Our aim is to study how vegetation changes, induced by nutrient input, affect the CO2 exchange of a nutrient-limited bog. We conducted 9- and 4-year fertilization experiments at Mer Bleue bog, where we applied N addition levels of 1.6, 3.2, and 6.4 g N m−2 a−1, upon a background deposition of about 0.8 g N m−2 a−1, with or without phosphorus and potassium (PK). Only the treatments 3.2 and 6.4 g N m−2 a−1 with PK significantly affected CO2 fluxes. These treatments shifted the Sphagnum moss and dwarf shrub community to taller dwarf shrub thickets without moss, and the CO2 responses depended on the phase of vegetation transition. Overall, compared to the large observed changes in the vegetation, the changes in CO2 fluxes were small. Following Sphagnum loss after 5 years, maximum ecosystem photosynthesis (Pgmax) and net CO2 exchange (NEEmax) were lowered (−19 and −46%, respectively) in the highest NPK treatment. In the following years, while shrub height increased, the vascular foliar biomass did not fully compensate for the loss of moss biomass; yet, by year 8 there were no significant differences in Pgmax and NEEmax between the nutrient and the control treatments. At the same time, an increase (24–32%) in ecosystem respiration (ER) became evident. Trends in the N-only experiment resembled those in the older NPK experiment by the fourth year. The increasing ER with increasing vascular plant and decreasing Sphagnum moss biomass across the experimental plots suggest that high N deposition may lessen the CO2 sink of a bog.  相似文献   

19.
We determined evapotranspiration in three experiments designed to study the effects of elevated CO2 and increased N deposition on ombrotrophic bog vegetation. Two experiments used peat monoliths with intact bog vegetation in containers, with one experiment outdoors and the other in a greenhouse. A third experiment involved monocultures and mixtures of Sphagnum magellanicum and Eriophorum angustifolium in containers in the same greenhouse. To determine water use of the bog vegetation in July–August for each experiment and each year we measured water inputs and outputs from the containers. We studied the effects of elevated CO2 and N supply on evapotranspiration in relation to vascular plant biomass and exposure of the moss surface (measured as height of the moss surface relative to the container edge). Elevated CO2 reduced water use of the bog vegetation in all three experiments, but the CO2 effect on evapotranspiration interacted with vascular plant biomass and exposure of the moss surface. Evapotranspiration in the outdoor experiment was largely determined by evaporation from the Sphagnum moss surface (as affected by exposure to wind) and less so by vascular plant transpiration. Nevertheless, elevated CO2 significantly reduced evapotranspiration by 9–10% in the outdoor experiment. Vascular plants reduced evapotranspiration in the outdoor experiment, but increased water use in the greenhouse experiments. The relation between vascular plant abundance and evapotranspiration appears to depend on wind conditions; suggesting that vascular plants reduce water losses mainly by reducing wind speed at the moss surface. Sphagnum growth is very sensitive to changes in water level; low water availability can have deleterious effects. As a consequence, reduced evapotranspiration in summer, whether caused by elevated CO2 or by small increases in vascular plant cover, is expected to favour Sphagnum growth in ombrotrophic bog vegetation.  相似文献   

20.
Soil microbial response in tallgrass prairie to elevated CO2   总被引:3,自引:0,他引:3  
Terrestrial responses to increasing atmospheric CO2 are important to the global carbon budget. Increased plant production under elevated CO2 is expected to increase soil C which may induce N limitations. The objectives of this study were to determine the effects of increased CO2 on 1) the amount of carbon and nitrogen stored in soil organic matter and microbial biomass and 2) soil microbial activity. A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers in the field from 1989 to 1992 and compared to unchambered ambient CO2 during the entire growing season. During 1990 and 1991, N fertilizer was included as a treatment. The soil microbial response to CO2 was measured during 1991 and 1992. Soil organic C and N were not significantly affected by enriched atmospheric CO2. The response of microbial biomass to CO2 enrichment was dependent upon soil water conditions. In 1991, a dry year, CO2 enrichment significantly increased microbial biomass C and N. In 1992, a wet year, microbial biomass C and N were unaffected by the CO2 treatments. Added N increased microbial C and N under CO2 enrichment. Microbial activity was consistently greater under CO2 enrichment because of better soil water conditions. Added N stimulated microbial activity under CO2 enrichment. Increased microbial N with CO2 enrichment may indicate plant production could be limited by N availability. The soil system also could compensate for the limited N by increasing the labile pool to support increased plant production with elevated atmospheric CO2. Longer-term studies are needed to determine how tallgrass prairie will respond to increased C input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号