首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Markus Hauck  Samjaa Javkhlan 《Flora》2009,204(4):278-288
Epiphytic lichen diversity was studied in a dark taiga forest of Pinus sibirica, Abies sibirica and Picea obovata in the western Khentey Mountains, northern Mongolia. Though most lichen species occurred on all three tree species, lichen diversity was higher on Abies and Picea than on Pinus. On branches, lichen vegetation differed less between tree species than on the trunk. The occurrence of many Parmeliaceae species with a hydrophilic surface and of many species producing the dibenzofuran usnic acid gives evidence of the low deposition of acidic pollutants in the study area. The Mn content of bark, which is known to limit at high values the abundance of epiphytic lichens in coniferous forests of Europe and North America, is apparently not controlling the spatial distribution of epiphytic lichens in the dark taiga of Mongolia. This is attributed to the dry and cold winters in Mongolia, as high Mn is especially leached from the surface of trees under moist conditions at temperatures around the freezing point, when the contact between water droplets and the tree surface is particularly intensive. Such moist and cold weather conditions are frequent in most parts of the northern coniferous forests of Europe and North America, but are rare events in the most continental parts of Asia, i.e. in Mongolia and eastern Siberia.  相似文献   

2.
Alexander Paul  Markus Hauck   《Flora》2006,201(6):451-460
Incubation with 10 mM MnCl2 for 1 h decreased the effective quantum yield of photochemical energy conversion in photosystem 2 in the bipartite chlorolichen Hypogymnia physodes as well as in the bipartite cyanolichens Leptogium saturninum and Nephroma helveticum, but not in the tripartite lichen Lobaria pulmonaria. Among the bipartite species, Mn sensitivity increased in the order H. physodes < N. helveticum < L. saturninum. This equals the sequence heteromerous chlorolichen < heteromerous cyanolichen < homoiomerous (gelatinous) cyanolichen. MnCl2 reduced non-photochemical quenching of chlorophyll fluorescence in the bipartite cyanolichens and in H. physodes; in the latter, however, this decrease was limited to light intensities above the adapted growth light intensity. Photochemical quenching was increased in H. physodes, but reduced in the bipartite cyanolichens. The results indicate that the bipartite cyanolichens L. saturninum and N. helveticum are even more sensitive to high Mn concentrations than the chlorolichen H. physodes, the low Mn tolerance of which has been already demonstrated. This agrees with results of field studies from western North America, where conifer bark under cyanolichens (including L. saturninum and N. helveticum) was found to contain less Mn than bark which only supported chlorolichens. The high sensitivity of the bipartite cyanolichens probably results from high sensitivity of the Nostoc photobiont. The high Mn tolerance of L. pulmonaria is probably not due to its being a tripartite lichen, but might be caused by high tolerance of the green-algal primary photobiont Dictyochloropsis, which is, however, not experimentally proven. The high Mn tolerance of the highly SO2-sensitive L. pulmonaria shows that different mechanisms are responsible for Mn and SO2 toxicity in lichens.  相似文献   

3.
On the upper surface of some specimens of the lichen Lobaria cf. crosa (Eschw.) Nyl. there are shrub-like growths which have a morphology similar to that of a free-living fruticose lichen, Polychidium umhausense (Auersw.) Henss., and contain a cyanophyte phycobiont, Nostoc. A few growths also contain scattered colonies of a chlorophyte phycobiont, in which case the lichen tissue locally assumes the foliose form characteristic of the parent Lobaria thallus. The differentiation of dorsiventral lichen cortices and the formation of a lax medulla and distinct algal layer are correlated with the presence of the green phycobiont. The lichen substances atranorin, gyrophoric acid, and 4-0-methylgyrophoric acid occur in both, the foliose L. erosa thallus and the fruticose tissue. It is suggested that the fruticose structures are erumpent cephalodia which are derived from the outgrowth of internal, cephalodia and should not be considered, to be epiphytic colonies of the lichen Polychidium.  相似文献   

4.
Pseudomonas syringae is a bacterial complex that is widespread through a range of environments, typically associated with plants where it can be pathogenic, but also found in non-plant environments such as clouds, precipitation, and surface waters. Understanding its distribution within the environment, and the habitats it occupies, is important for examining its evolution and understanding behaviours. After a recent study found P. syringae living among a range of vascular plant species in Iceland, we questioned whether lichens could harbour P. syringae. Sixteen different species of lichens were sampled all over Iceland, but only one lichen genus, Peltigera, was found to consistently harbour P. syringae. Phylogenetic analyses of P. syringae from 10 sampling points where lichen, tracheophyte, and/or moss were simultaneously collected showed significant differences between sampling points, but not between different plants and lichens from the same point. Furthermore, while there were similarities in the P. syringae population in tracheophytes and Peltigera, the densities in Peltigera thalli were lower than in moss and tracheophyte samples. This discovery suggests P. syringae strains can localize and survive in organisms beyond higher plants, and thus reveals opportunities for studying their influence on P. syringae evolution.  相似文献   

5.
Host use by herbivores is largely determined by host properties such as nutrient content and chemical defence against foragers. The impacts of these attributes on a herbivore may largely depend on its life cycle stage. Lichen species are known to differ in nutritional quality and level of chemical defence and, consequently, vary as fodder for herbivores. The aim of this study was to explore the impact of several lichen species and the presence of their secondary metabolites on their use as hosts by a specialist lichen-feeder, Cleorodes lichenaria. This study also addressed, for the first time, how a specialist lichen-feeder deals with different lichen secondary metabolites. In the beginning of their development, larvae grew better on Xanthoria parietina than on the other host lichens, whereas older larvae grew best on Ramalina fraxinea. Lichen secondary chemicals in R. fraxinea and Parmelia sulcata hindered larval growth in the beginning but after 75 days lichen secondary chemicals had no impact on the mass of larvae. Physodic acids in Hypogymnia physodes were lethal to larvae. In general, larvae metabolized 70–95% of ingested lichen secondary chemicals and the rest of these were excreted in frass. Lichen secondary metabolites in P. sulcata restrict and in H. physodes prevent their use as a host for C. lichenaria larvae. Our main finding, the ability of larvae to metabolize several lichen secondary metabolites, indicates digestive adaptation to these chemicals. No signs of sequestration of these chemicals were found.  相似文献   

6.
Lichen substances (i.e. lichen-specific carbon-based secondary compounds) are known to be involved in the uptake and immobilization of metal ions, though the biochemical mechanisms of this interaction are largely unexplained. Previous research on potential effects of lichen substances on heavy metal uptake and tolerance mostly focused on lichens in heavily polluted areas with exceptionally high metal concentrations. In the present study, we aimed at gathering information as to whether lichen substances might be involved in the fine-tuning of metal uptake even at not or low-polluted sites. Therefore, we studied lichen substance concentrations in the epiphytic lichen Hypogymnia physodes and metal concentrations in its substratum in a montane spruce forest of Germany. H. physodes produces two depsides and five depsidones, which had been shown to be involved in metal homeostasis, namely in Cu and Mn uptake, in previous laboratory experiments. The amount of lichen substances increased with increasing heavy metal concentration in the substratum, though the latter varied only in the range of a few μmol g−1 between the sample trees. Variability of lichen substance concentrations in H. physodes within the individual trees was low. Among the different lichen substances of H. physodes, the amount of the depsidone physodalic acid relative to the total of lichen substances was most closely correlated to the concentrations of Cu and Mn in the substratum, whereas the amount of the depsidone 3-hydroxyphysodic acid decreased both with increasing concentrations of these two metals and physodalic acid. Thus, our data suggest that lichen substances contribute to metal homeostasis not only in heavy metal-rich habitats, but also at not or low-polluted sites where the lichen substances apparently help to maintain constant intracellular metal concentrations despite of spatially varying availabilities of metal ions.  相似文献   

7.
Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi‐arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of 45 (50 cm × 50 cm) plots, where we estimated the cover of every lichen and BSC‐forming lichen species. We also collected soil samples to estimate bacterial species richness and abundance, and to assess different surrogates of ecosystem functioning. We used path analysis to evaluate the relationships between the richness/abundance of above‐ and below‐ground species and ecosystem functioning. Results: We found that the greatest direct effect upon the ecosystem function matrix was that of the biological soil crust (BSC) richness matrix. A few bacterial species were sensitive to the lichen community, with a disproportionate effect of Collema crispum and Toninia sedifolia compared to their low abundance and frequency. The lichens Fulgensia subbracteata and Toninia spp. also had negative effects on bacteria, while Diploschistes diacapsis consistently affected sensitive bacteria, sometimes positively. Despite these results, very few of the BSC effects on ecosystem function could be ascribed to changes within the bacterial community. Conclusion: Our results suggest the primary importance of the richness of BSC‐forming lichens as drivers of small‐scale changes in ecosystem functioning. This study provides valuable insights on semi‐arid ecosystems where plant cover is spatially discontinuous and ecosystem function in plant interspaces is regulated largely by BSCs.  相似文献   

8.
Lichens are the dominant organisms on most of the South Atlantic island of St Helena. In total, 220 different species were found during a recent survey, most of which have never been reported from the island. Previously, less than 50 lichen species were reported from the island, one half of which are most probably incorrect records. The total number of lichens known from the island now stands at 225. Most species could be identified, but the following, most probably endemic, species are described as new to science: Dolichocarpus seawardii , which is only the second species in this genus, the type being from Chile; Dermatiscum pusillum , which is only the third species in this African genus; Dimelaena triseptata ; Xanthoparmelia beccae ; and four Ramalina species, Ramalina geniculatella , R. ketner‐oostrae , R. rigidella , and R. sanctae‐helenae . The lichen flora has many species in common with that of the geologically much younger Ascension Island, where just under 100 species were recently found by the author, most of which are equally new to that island. Lecanora sanctae‐helenae, previously known as the only endemic lichen of St Helena, was also found to be abundant on Ascension Island. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 147–171.  相似文献   

9.
Foliicolous lichens are formed by diverse, highly specialized fungi that establish themselves and complete their life cycle within the brief duration of their leaf substratum. Over half of these lichen‐forming fungi are members of either the Gomphillaceae or Pilocarpaceae, and associate with Trebouxia‐like green algae whose identities have never been positively determined. We investigated the phylogenetic affinities of these photobionts to better understand their role in lichen establishment on an ephemeral surface. Thallus samples of Gomphillaceae and Pilocarpaceae were collected from foliicolous communities in southwest Florida and processed for sequencing of photobiont marker genes, algal cultivation and/or TEM. Additional specimens from these families and also from Aspidothelium (Thelenellaceae) were collected from a variety of substrates globally. Sequences from rbcL and nuSSU regions were obtained and subjected to Maximum Likelihood and Bayesian analyses. Analysis of 37 rbcL and 7 nuSSU algal sequences placed all photobionts studied within the provisional trebouxiophycean assemblage known as the Watanabea clade. All but three of the sequences showed affinities within Heveochlorella, a genus recently described from tree trunks in East Asia. The photobiont chloroplast showed multiple thylakoid stacks penetrating the pyrenoid centripetally as tubules lined with pyrenoglobuli, similar to the two described species of Heveochlorella. We conclude that Heveochlorella includes algae of potentially major importance as lichen photobionts, particularly within (but not limited to) foliicolous communities in tropical and subtropical regions worldwide. The ease with which they may be cultivated on minimal media suggests their potential to thrive free‐living as well as in lichen symbiosis.  相似文献   

10.
The epiphytic and epixylic lichen flora of natural forests was recorded in different parts of Estonia. Altogether 232 taxa of lichens, lichenicolous fungi, or non-lichenized fungi were recorded, 10 of them listed in the Estonian Red Data Book. We found regional differences in lichen species composition and diversity caused by differences in the forest types. The tree-species-rich boreo-nemoral forests had the most diverse lichen flora, while the boreal forest dominated by coniferous trees or birch had the lowest diversity. The stand age proved to be significant in regard to the number of lichen species in a forest. The most remarkable effect on the diversity of forest lichen species was caused by the presence of Populus tremula. Aspen had the highest number of lichen species on the basal trunk and twigs, and also the highest number of host-specific lichen species.  相似文献   

11.
Biological soil crusts dominated by lichens are common components of shrub-steppe ecosystems in northwestern US. We conducted growth chamber experiments to investigate the effects of these crusts on seed germination and initial seedling establishment of two annual grasses; the highly invasive exotic Bromus tectorum L. and the native Vulpia microstachys Nutt. We recorded germination time courses on bare soil and two types of biological soil crusts; one composed predominantly of the lichen Diploschistes muscorum (Scop.) R. Sant. (lichen crust) and the other comprised of an assortment of lichens and mosses (mixed crust). Final germination on the lichen crust for both grass species was about a third of that on the bare soil surface. Mean germination time (MGT) was 3–4 days longer on the lichen crust compared with the bare soil. In contrast, there was no difference in germination percentage or MGT between the mixed crust and bare soil, and results were similar for both grass species. For both species, root penetration of germinating seeds on the lichen crust was lower than on the bare soil or mixed crust surfaces. The combined effects of the lichen crust on germination and root penetration resulted in an overall reduction in seedling establishment of 78% for V. microstachys and 85% for B. tectorum relative to the bare soil treatment. Our results clearly demonstrate that lichen-dominated biological soil crust can inhibit germination and root penetration, but the extent of these effects depends on the composition of the crust. Responsible Editor: Tibor Kalapos  相似文献   

12.
该研究以采自新疆的100余份粉衣科地衣标本为研究材料,通过形态解剖学、地衣化学以及分子生物学的方法鉴定出6个种和1个变种,分别为中央黑瘤衣(Buellia centralis)、丽黑瘤衣(B.elegans)、蒙古黑瘤衣(B.mongolica)、鳞饼衣(Dimelaena oreina)、鳞饼衣白磷变种(D.oreina var.exalbescens)、海登氏多瘤胞(Diplotomma hedinii)和绿色四孢黑瘤衣(Tetramelas chloroleucus),其中丽黑瘤衣、蒙古黑瘤衣和绿色四孢黑瘤衣为新疆新增粉衣科地衣新记录,至此新疆粉衣科地衣共有6属13种1变种;并提供了新疆粉衣科地衣的分种检索表、物种描述、系统发育分析以及形态解剖结构照片。  相似文献   

13.
Antioxidants are compounds that scavenge the free radicals produced in living organisms. The antioxidant potential of eight Arctic lichen species was evaluated in vitro using free radical scavenging activity (FRS), inhibition of lipid peroxidation (ILP), and Trolox equivalent antioxidant capacity assay (TEAC). FRS activities of lichen species in various organic solvents such as methanol, ethanol, acetone, and dimethyl sulphoxide (DMSO) were in the range 9.6–51.77%, while ILP activities in these solvents ranged from 32.5 to 82.43%. Pseudophebe pubescens showed the highest ILP (82.43%) and FRS (51.77%) activities as compared to other lichen species and the standard antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). The TEAC value was also found to be higher in all species compared to the standard water soluble vitamin E analog Trolox (3.9 mM). The order of antioxidative activities in lichen species was Pseudophebe pubescens > Cladonia amaurocraea > Cladonia mediterranea > Physcia caesia > Flavocetraria nivalis > Cetraria fastigata > Xanthoria elegans > Umbilicaria hyperborea. This is the first report of the measurement of antioxidant potential in Arctic lichens.  相似文献   

14.
The anatomical and morphological structure of the lichenCaloplaca coralligera (Hue.)Zahlbr. was investigated in connection with mechanisms of colonization and adaptation to the special conditions of maritime Antarctic.Caloplaca coralligera seems to be endemic to the antarctic region. The lichen is unique in its morphology, growing like a crustose lichen with a prothallus, but the very thallus being composed of many vertical, frutescent branches not higher than large isidia. Due to fusions of the distal parts of the branches the morphology is characterized by air-filled cavities between the erect thallus parts where the phycobionts are located only close to the outermost surface. But also anatomically a system of air-filled cavities is developed by a net-like structure of hyphae. This may result in an insulation from temperature exchanges with the rocky substrate. It is speculated that this peculiar thallus structure might be advantageous to a lichen growing on compact substrates by buffering the diurnal temperature extremes which are characteristic for rocks under a strong radiation exchange with the atmospheric surrounding.Dedicated to Prof. DrO. L. Lange on the occasion of his retirement and of his 65th birthday.  相似文献   

15.
The lichens, Nephroma expallidum (Nyl.) Nyl. and N. arcticum (L.) Torss., consistently have at least two symbionts in a single thallus: a green alga in the algal layer and a blue-green alga in the internal cephalodia. The cephalodia originate from algal cells in contact with the lower surface of the lichen, in the zone of rhizine formation. The rhizines surround the epiphytic algal colony and form a second cortical layer; following dissociation of the original lower cortex, further growth of the two organisms results in the cyanophyte colony being enveloped by a compact layer of fungal tissue and positioned in the lichen medulla. The colony may eventually assume a superior or inferior position in relation to the lichen thallus, depending in part on the lichen species. Nephroma anticum may have two distinct morphological forms of blue-green algae in the same thallus and occasionally in the same cephalodium. It appears that the relationship that exists between the cephalodial algae and the lichen thallus is antagonistic and results, in some cases, in the exclusion of the green algal layer and death to the cephalodial cyanophytes.  相似文献   

16.
During dark-induced leaf senescence (DIS), the non-functional stay-green mutantore10 showed delayed chlorophyll (Chl) degradation and increased stability in its light-harvesting complex II (LHCII). These phenomena were closely related to the formation of aggregates that mainly consisted of terminal-truncated LHCII (Oh et al., 2003). Theore10 mutant apparently lacks the protease needed to degrade the truncated LHCII. In wild-type (WT) plants, protease was found in the thylakoid fraction, but not the soluble fraction. A similar experiment using dansylated LHCII revealed that the protease degraded both WT andore10 LHCII, indicating that its stability inore10 perhaps did not result from a defect in the LHCII polypeptides themselves. Although protease activity was not present in non-senesced WT leaves, it was induced during DIS. It also was possible to diminish the high level of protease present in the thylakoids through high-salt washing, suggesting that this enzyme is extrinsically bound to the outer surface of the stroma-exposed thylakoid regions.  相似文献   

17.
The concentrations of Pb, Cu, Fe, and Mn were analyzed in surface deposit and tissue ofQuercus ilex leaves from several sites of the urban area of Naples, exposed to different degrees of air pollution. These included some major roads with heavy traffic loads, squares, and three urban parks. The soil from the trunk base area ofQ. ilex trees in the same sites was also analyzed for total and available metal contents. Pb, Cu, and Fe contents in the surface deposit and leaf tissue were significantly higher (p<0.01) in leaves from roadside sites than in leaves from parks; significant correlations were found between deposit- and tissue-contents of Pb, Cu, and Fe. Mn content in leaves from roadside sites and in leaves from parks were similar and Mn content in the leaf deposit was irrelevant. Significant differences (p<0.001) in both total and available Pb and Cu soil content were found between sampling sites. Also for available Fe and Mn soil content differences among sites were relevant, although the highest values were measured in soil from urban parks. A positive correlation between leaf and soil metal content was found only for Pb, thus suggesting that trace metal contents of leaves directly depend on atmospheric depositions. Seasonal variations of Pb, Cu, and Fe were pronounced at a polluted site, whereas no relevant seasonal variation was observed at a control site; moreover, metal accumulation was high at the polluted site. Mn content and seasonal dynamics were comparable at control and polluted sites.  相似文献   

18.
A unique, species‐rich and endangered lichen biota can be found on European coastal and inland sand dunes. However, it is increasingly affected by natural succession as well as by anthropogenic disturbances. We studied lichen diversity on the grey dunes and dune heaths of coastal and inland regions of Estonia. A total of 28 study plots were investigated; in each 0.1 ha study plot general environmental variables and anthropogenic disturbances were described and all epigeic lichen species were identified. We found 66 lichenized fungus (lichen) species, including several rare and ten red‐listed lichens. Multivariate analysis (DCA, CCA) was performed to examine gradients in species composition and to relate variation in species data to environmental factors. In addition, we used redundancy analysis (RDA) to relate variation in species’ trait composition to environmental factors. Species composition on grey dunes differed significantly from that on dune heaths. The characteristic species for grey dunes are, besides several Cladonia species, foliose lichens, e.g. Hypogymnia physodes, Parmelia sulcata and Peltigera spp. Also species’ traits composition was different for either habitat, indicating that sorediate lichens, foliose lichens, lichens with cyanobacterium as the main photobiont, and sparsely branched Cladonia species dominate on grey dunes, while esorediate, green‐algal, crustose and richly branched fruticose lichens are common on dune heaths. Soil pH was the most essential environmental variable for determining both species composition and species’ traits composition. The composition of lichen species was also significantly influenced by forest closeness, soil Mg content and cover of bare sand; the effect of ground disturbances was low compared to the effect of these environmental factors. To protect and conserve the species‐rich lichen biota, it is necessary to protect the dune habitats from building activity, to avoid overtrampling in recreation areas and to regularly remove shrubs and trees.  相似文献   

19.
Markus Hauck  Toby Spribille   《Flora》2005,200(6):547-562
The relevance of chemical site factors for the abundance of epiphytic lichens was studied in Picea engelmannii-Abies lasiocarpa forests of the Salish Mountains, northwestern Montana, USA. The Salish Mountains are an area with relatively low atmospheric pollutant load and low precipitation. Canonical correspondence analysis (CCA) suggests that cover of several lichen species was limited by high Mn concentrations of bark or by high ratios of Mn to Ca, Mg and Fe. Mn in the bark is known primarily to derive from the soil. An effect of Mn concentration or Mn/Ca and Mn/Mg ratios was not found on A. lasiocarpa. This suggests that A. lasiocarpa deposits Mn in the bark in a physiologically inactive form as already known from A. balsamea. Precipitation chemistry was apparently less relevant for epiphytic lichen distribution in the Salish Mountains, as no correlations between element concentrations in stemflow and cover values were found and as amounts of stemflow were small. However, precipitation in the study year was less than average. The lacking significance of precipitation chemistry is probably the cause why epiphytic lichen vegetation differed less between living and dead trees in the Salish Mountains than in highly polluted coniferous forests studied by our group in Germany; in Germany, the difference between living and dead trees was attributed to reduced interception of pollutants from the atmosphere by trees with reduced crown surface. The result of the present study that small-scale variation of epiphytic lichen abundance is only partly explainable by chemical parameters gives rise to the assumption that microclimate (e.g., moisture), which has not been systematically explored, could be an important site factor for epiphytic lichens in the Salish Mountains. Furthermore, tree age was identified by CCA as a relevant site factor for lichens on P. engelmannii.  相似文献   

20.
Coenogonium interplexum Nyl. is a green to yellow-orange filamentous lichen commonly found on tree bark, rocks, and soil. The mycobiont is the ascomycetous fungus Coenogonium. The ultrastructure of the lichenized phycobiont, Trentepohlia, closely resembles that of the non-lichenized form, a filamentous subaerial green alga. The mycobiont has a typical fungal ultrastructure, and the cell wall sometimes appears thinner at points of contact with the phycobiont wall. Several branched fungal hyphae are usually randomly arranged around a Trentepohlia filament, and may in some cases completely ensheath the alga. Although no haustoria were observed, this relationship may still be termed a lichen since there is some modification of the alga and the lichen is structurally distinct from the two symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号