首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil organic sulfur dynamics in a coniferous forest   总被引:3,自引:3,他引:0  
Sulfate microbial immobilization and the mineralization of organic S were measured in vitro in soil horizons (LFH, Ae, Bhf, Bf and C) of the Lake Laflamme watershed (47°17 N, 71°14 O) using 35SO4. LFH samples immobilized from 23 to 77% of the added 35SO4 within 2 to 11 days. The 35SO4 microbial immobilization increased with temperature and reached an asymptote after a few days. The mineral soil generally immobilized less than 20% of the added 35SO4, and an asymptote was reached after 2 days. An isotopic equilibrium was rapidly reached in mineral horizons. A two-compartment (SO4 and organic S) model adequately described 35SO4 microbial immobilization kinetics. The active organic reservoir in the whole soil profile represented less than 1% of the total organic S. The average concentrations of dissolved organic S (DOS) in the soil solutions leaving the LFH, Bhf and Bf horizons were respectively 334, 282 and 143 µgL–1. Assuming that the DOS decrease with soil depth corresponded to the quantities adsorbed in the B horizons, we estimated that 12 800 kgha–1 of organic S could have been formed since the last glaciation, which is about 13 times the size of the actual B horizons reservoirs. Our results suggest that the organic S reservoirs present in mineral forest soils are mostly formed by the DOS adsorption resulting from incomplete litter decomposition in the humus layer. The capability of these horizons to immobilize SO4 from the soil solution would be restricted to a 1% active fraction composed of microorganisms. Despite their refractory nature, these reservoirs can, however, be slowly decomposed by microorganisms and contribute to the S-SO4 export from the watershed in the long term.  相似文献   

2.
The number of microorganisms of major metabolic groups and the rates of sulfate reduction and methanogenesis processes in the formation waters of the high-temperature horizons of Dagang oil field have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogens. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioisotope methods involving NaH14CO3 and 14CH3COONa. Analysis of enrichment cultures 16S rDNA of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not revealed. Phylotypes of the representatives of Thermococcus spp. were found among archaeal 16S rDNA. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found in high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.  相似文献   

3.
We measured F420-dependent N5,N10-methylenetetrahydro-methanopterin dehydrogenase, N5, N10-methenyltetrahydro-methanopterin cyclohydrolase, and F420-reducing hydrogenase levels in Methanosarcina barkeri grown on various substrates. Variation in dehydrogenase levels during growth on a specific substrate was usually <3-fold, and much less for cyclohydrolase. H2–CO2-, methanol-, and H2–CO2+ methanol-grown cells had roughly equivalent levels of dehydrogenase and cyclohydrolase. In acetate-grown cells cyclohydrolase level was lowered 2 to 3-fold and dehydrogenase 10 to 80-fold; this was not due to repression by acetate, since, if cultures growing on acetate were supplemented with methanol or H2–CO2, dehydrogenase levels increased 14 to 19-fold, and cyclohydrolase levels by 3 to 4-fold. Compared to H2–CO2- or methanol-grown cells, acetate-or H2–CO2 + methanol-grown cells had lower levels of and less growth phase-dependent variation in hydrogenase activity. Our data are consistent with the following hypotheses: 1. M. barkeri oxidizes methanol via a portion of the CO2-reduction pathway operated in the reverse direction. 2. When steps from CO2 to CH3-S-CoM in the CO2-reduction pathway (in either direction) are not used for methanogenesis, hydrogenase activity is lowered.Abbreviations MF methanofuran - H4MPT 5,6,7,8-tetrahydromethanopterin - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP heterodisulfide of HS-CoM and HS-HTP - F420 coenzyme F420 (a 7,8-didemethyl-8-hydroxy-5-deaza-riboflavin derivative) - H2F420 reduced coenzyme F420 - HC+=H4MPT N5,N10-methenyl-H4MPT - H2C=H4MPT N5,N10-methylene-H4MPT - H3C=H4MPT N5-methyl-H4MPT - BES 2-bromoethanesulfonic acid  相似文献   

4.
We compared the microbial community structures that developed in the biofilm anode of two microbial electrolysis cells fed with ethanol, a fermentable substrate—one where methanogenesis was allowed and another in which it was completely inhibited with 2‐bromoethane sulfonate. We observed a three‐way syntrophy among ethanol fermenters, acetate‐oxidizing anode‐respiring bacteria (ARB), and a H2 scavenger. When methanogenesis was allowed, H2‐oxidizing methanogens were the H2 scavengers, but when methanogenesis was inhibited, homo‐acetogens became a channel for electron flow from H2 to current through acetate. We established the presence of homo‐acetogens by two independent molecular techniques: 16S rRNA gene based pyrosequencing and a clone library from a highly conserved region in the functional gene encoding formyltetrahydrofolate synthetase in homo‐acetogens. Both methods documented the presence of the homo‐acetogenic genus, Acetobacterium, only with methanogenic inhibition. Pyrosequencing also showed a predominance of ethanol‐fermenting bacteria, primarily represented by the genus Pelobacter. The next most abundant group was a diverse community of ARB, and they were followed by H2‐scavenging syntrophic partners that were either H2‐oxidizing methanogens or homo‐acetogens when methanogenesis was suppressed. Thus, the community structure in the biofilm anode and suspension reflected the electron‐flow distribution and H2‐scavenging mechanism. Biotechnol. Bioeng. 2010;105: 69–78. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Possible chemotrophic metabolism at a site of interest is controlled not only by the catabolic energy expressed as the Gibbs energy of reaction (ΔrG) but also by the kinetic constraints due to the availability of electron acceptors and donors. We introduced graphical and stochastic approaches for determining the ΔrG threshold required to support a microbial population with a specific catabolic strategy under kinetic constraints. Invasibility as an indicator of the present reproductive ability of a microbial population was evaluated by simultaneously calculating ΔrG for the catabolic reaction and the microbial catalytic rate. For example, the neutrophilic iron-oxidizing bacteria's invasibility was calculated by randomly choosing the Fe2+ and O2 concentrations between 10?8 and 10?2 mol L?1, and pH between 4 and 8, to determine the ΔrG threshold for invasion. Parameters were estimated from batch experiments of neutrophilic iron-oxidizing bacteria reported in previous studies. Under the given conditions, the stochastic approach predicted that the neutrophilic iron-oxidizing bacteria can always invade a system in which the ΔrG for Fe oxidation is below ?90 kJ mol Fe?1, can occasionally invade if ΔrG is between ?45 and ?90 kJ mol Fe?1, and can never invade if ΔrG is above ?45 kJ mol Fe?1. The ΔrG threshold for invasion is sifted by the growth yield coefficient, the loss rate of cells, the maximum cell-specific Fe oxidation rate constant, and the temperature. The ΔrG threshold for invasion may be unable to rigorously predict the stable dominance of microbial metabolism, but can provide a rough indication for the possible microbial metabolism under current conditions.  相似文献   

6.
Alkaline, sulfidic, 54 to 60°C, 4 to 53 million-year-old meteoric water emanating from a borehole intersecting quartzite-hosted fractures >3.3 km beneath the surface supported a microbial community dominated by a bacterial species affiliated with Desulfotomaculum spp. and an archaeal species related to Methanobacterium spp. The geochemical homogeneity over the 650-m length of the borehole, the lack of dividing cells, and the absence of these microorganisms in mine service water support an indigenous origin for the microbial community. The coexistence of these two microorganisms is consistent with a limiting flux of inorganic carbon and SO42− in the presence of high pH, high concentrations of H2 and CH4, and minimal free energy for autotrophic methanogenesis. Sulfide isotopic compositions were highly enriched, consistent with microbial SO42− reduction under hydrologic isolation. An analogous microbial couple and similar abiogenic gas chemistry have been reported recently for hydrothermal carbonate vents of the Lost City near the Mid-Atlantic Ridge (D. S. Kelly et al., Science 307:1428-1434, 2005), suggesting that these features may be common to deep subsurface habitats (continental and marine) bearing this geochemical signature. The geochemical setting and microbial communities described here are notably different from microbial ecosystems reported for shallower continental subsurface environments.  相似文献   

7.
In the absence of H2, Methanococcus spp. utilized pyruvate as an electron donor for methanogenesis. For Methanococcus voltae A3, Methanococcus maripaludis JJ1, and Methanococcus vannielii, typical rates of pyruvate-dependent methanogenesis were 3.4, 2.8, and 3.9 nmol min-1 mg-1 cell dry wt, respectively. These rates were 1–4% of the rates of H2-dependent methanogenesis. For M. voltae, the concentration of pyruvate required for one-half the maximum rate of methanogenesis was 7 mM, and pyruvate-dependent methanogenesis was linear for 3 days. Radiolabeled acetate was formed from [3-14C]pyruvate, and the stoichiometry of pyruvate consumed per acetate produced was 1.12±0.27. The stoichiometry of pyruvate consumed per CH4 produced was 3.64±0.34. These values are close to the expected values of 1 acetate and 4 CH4. Although 10–30% of total cell carbon could be obtained from exogenous pyruvate during growth with H2, pyruvate did not replace the nutritional requirement for acetate in Methanococcus voltae A3 or two acetate auxotrophs of Methanococcus maripaludis, JJ6 and JJ7. These results suggest that pyruvate was not oxidized in the presence of H2. The inability to oxidize pyruvate during H2-dependent methanogenesis would prevent a futile cycle of pyruvate oxidation and biosynthesis during autotrophic growth.  相似文献   

8.
To reveal the mechanisms of sedimental H2S accumulation, annual investigations on sedimental environments were conducted in two temperate estuarine lagoons. The lagoons, Gamo and Idoura (Japan), have similar shapes, locations, and topographical properties but different degrees of H2S accumulation. Water stagnation causes a high phytoplankton biomass (Chl. a; 26–52 g l–1) in the inner Gamo Lagoon. Gamo Lagoon sediment was characterized by high bounded sulfides (bounded Smainly FeS) and H2S contents, and low C/N ratios (mean = 10.4) and iron (reactive Fe2+ and total Fe) contents. H2S was not detected in Idoura Lagoon where phytoplankton biomass was much lower (Chl. a; 0.6–4 g l–1). Idoura Lagoon sediment had high C/N ratios (mean=17.9) and high iron contents. The C/N ratio difference implies that organic matter in Gamo Lagoon originates mainly from more decomposable phytoplankton, while organic matter in Idoura Lagoon derives mainly from terrestrial vascular plants with lower decomposability. The excess loading of phytoplanktonic detritus in Gamo accelerates sedimentary microbial activity, including sulfate reduction (i.e., H2S production). High Fe2+and low bounded S contents in Idoura sediment indicate a high chemical buffering capacity toward H2S. In contrast, almost all Fe2+ in Gamo Lagoon had already reacted with H2S as FeS. H2S accumulation in Gamo Lagoon is caused by low sedimentary chemical buffering capacity toward H2S, as well as higher microbial H2S production, caused by the excess loading of phytoplanktonic detritus.  相似文献   

9.
The impact of indigenous microorganisms on the mineral corrosion and mineral trapping in the SO2 co-injected CO2-saline-sandstone interaction was investigated in this study by lab experiments under 55?°C, 15?M pa. The results verified that co-injection of SO2 resulted in a decrease in biomass and shifts in microbial communities within 90?days, but some microorganisms still could adapt to acidic, high-temperature, high-pressure, and high-salinity environments. Firmicutes and Proteobacteria remained dominant phylum, but phylum Proteobacteria showed better tolerance to the co-injection of SO2 in the initial period. In the SO2 co-injected CO2-saline-sandstone interaction under microbial mediation, acid-producing bacteria further promoted the corrosion of K-feldspar, albite, and clay minerals, meanwhile mobilizing more K+, Na+, Ca2+, Mg2+ into solution. The acidogenic effect may be linked to the dominant genus of Bacillus, Paenibacillus, Acinetobacter, Pseudomonas and Exiguobacterium. Co-injection of SO2 inhibited the carbonates capture, while microbial acid production further reduced the pH, further inhibiting carbonates capture. As a result, no secondary carbonate (e.g., calcite) was observed on a short time scale within 90?days. So, microbial acidogenic effect was not conducive to carbonates capture in short term.  相似文献   

10.
The oxidation of pyrite and other sulfides is responsible for the generation of acid mine drainage and acid rock drainage, which leads to further contamination of soil and water. In these processes, microbial oxidation usually prevails over chemical oxidation. To determine the mechanism of microbial oxidation of pyrite, the interaction of Acidithiobacillus ferrooxidans with pyrite was comprehensively studied, and the sulfur transformation in the interaction was disclosed using X-ray photoelectron spectroscopy (XPS) depth profiling. Abundant bacterial cells attach to pyrite surface and form biofilms, which greatly enhances surface corrosion and results in two types of etching pits: bacteria-driven rod-shaped and chemically driven hexagonal etching pits. The details of XPS depth profiles on a reacted pyrite surface reveal that the surface sulfur was first oxidized into elemental sulfur. Thereafter, elemental sulfur was further oxidized to intermediate species S2O32?, SO32?, and ultimately to SO42?. The oxidation sequence of sulfur is S22?/S2?→Sn2?, S0→SO32?, and S2O32?→SO42?. Meanwhile, the remnant ferrous iron in the surface layer was released into solution and subsequently oxidized into Fe3+ by A. ferrooxidans and dissolved oxygen, which in turn enhanced the oxidation of sulfur. Fe3+, sulfate, and other ions (e.g., K+, Na+, NH4+) in the solution precipitated as jarosite, hydroniumjarosite, and ammoniojarosite. On the basis of results, a three-staged model is proposed to interpret the kinetics of microbial oxidation of pyrite.  相似文献   

11.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

12.
Cellulose in wastewater was converted into H2 by a mixed culture in batch experiments at 55°C with various wastewaters pH (5.5–8.5) and cellulose concentrations (10–40 g l–1). At the optimal pH of 6.5, the maximum H2 yield was 102 ml g–1 cellulose and the maximum production rate was 287 ml d–1 for each gram of volatile suspended solids (VSS). Analysis of 16S rDNA sequences showed that the cellulose-degrading mixed culture was composed of microbes closely affiliated to genus Thermoanaerobacterium.  相似文献   

13.
张逸飞  刘小慧  杨平  黄佳芳  郭谦谦  仝川 《生态学报》2018,38(13):4715-4723
2015年12月—2016年10月,每月小潮日原位定期向闽江口塔礁洲淡水感潮野慈姑(Sagittaria trifolia L.)湿地施加剂量为60、120 kg S hm~(-2)a~(-1)的K_2SO_4溶液(分别记做S-60和S-120),探讨模拟硫酸根(SO_4~(2-))沉降对河口淡水感潮湿地甲烷(CH4)排放通量及间隙水SO_4~(2-)浓度的影响。对照、S-60和S-120处理组CH_4排放通量年均值分别为(7.88±1.00)mg h~(-1)m~(-2)、(6.55±0.97)mg h~(-1)m~(-2)和(6.66±1.49)mg h~(-1)m~(-2)。在年尺度上,两个高强度模拟SO_4~(2-)沉降处理组均未显著降低闽江口淡水感潮野慈姑湿地CH_4排放通量(P0.05),即高强度SO_4~(2-)沉降不会对河口淡水感潮湿地CH_4排放通量产生类似于其对泥炭湿地和水稻田的显著抑制效应。在年尺度以及秋、冬季,两个施加K_2SO_4溶液处理显著增加了野慈姑湿地10 cm深度土壤间隙水SO_4~(2-)浓度。对于各个处理组,温度较高的夏、秋季CH_4排放通量均显著高于温度相对较低的冬、春季(P0.05)。不同处理组CH_4排放通量均与土壤温度呈显著正相关关系,温度仍然是影响亚热带河口淡水感潮湿地CH_4排放通量的重要环境因子。  相似文献   

14.
Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 M) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 M) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.  相似文献   

15.
The research performed in August 2004 within the framework of the Russian-American Long-term Census of the Arctic (RUSALCA) resulted in the first data concerning the rates of the key microbial processes in the water column and bottom sediments of the Bering strait and the Chukchi Sea. The total bacterial counts in the water column varied from 30 × 103 cells ml?1 in the northern and eastern parts to 245 × 103 cells ml?1 in the southern part. The methane content in the water column of the Chukchi sea varied from 8 nmol CH4l?1 in the eastern part of the sea to 31 nmol CH4l?1 in the northern part of the Herald Canyon. Microbial activity occurred in the upper 0–3 cm of the bottom sediments; the methane formation rate varied from 0.25 to 16 nmol CH4dm?3 day?1. The rates of methane oxidation varied from 1.61 to 14.7 nmol CH4dm?3 day?1. The rates of sulfate reduction varied from 1.35 to 16.2 μmol SO 4 2? dm?1 day?1. The rate of methane formation in the sediments increased with depth, while sulfate reduction rates decreased (less than 1 μmol SO 4 2? dm?3 day?1). These high concentrations of biogenic elements and high rates of microbial processes in the upper sediment layers suggest a specific type of trophic chain in the Chukchi Sea. The approximate calculated balance of methane emission from the water column into the atmosphere is from 5.4 to 57.3 μmol CH4m?2 day?1.  相似文献   

16.
Anaerobic bacterial degradation of landfill waste produces a globally significant source of the greenhouse gas methane. Stable isotopic measurements of methane [δI3C(CH4) and δD(CH4)] can often fingerprint different sources of methane (natural vs. anthro‐pogenic) and help identify the bacterial processes involved in methane production. Landfill microbial communities are complex and diverse, and hence so too is the biogeochem‐istry of methane formation. To investigate the influence of (l) the methane formation pathway (acetoclastic methanogenesis and CO2 reduction), and (2) SD of water on the stable isotopic composition of landfill methane, two model butyrate‐degrading landfill systems were established. The systems were inoculated with domestic refuse from a landfill and incubated in the laboratory for 92 days. Both systems were identical except δD of water initially added to system 2 was 118% heavier than system 1. Between days 39 and 72 the systems were resupplemented with butyrate. Production of CH4 and CO2 and changes in volatile fatty acid concentration confirmed that active methanogenic populations had been established. CH4 became 13C enriched in both incubations with time. Interpreting changes in acetate, butyrate, and propionate concentration during incubation is complicated, but these observations and other information suggest that the dominant methanogenic substrate changed front CO2/H2 to acetate as the experiment progressed. This is also consistent with the observed 13C enrichment of CH4, as 13C discrimination during methane production from acetate is less than from CO2. In contrast, δD(CH4) remained relatively constant, suggesting that this measurement may not provide a reliable basis for distinguishing between CH4 from CO2 reduction and acetoclastic methanogenesis, as has previously been suggested.  相似文献   

17.
The heavier analogs of C2H2 have been studied at the B3LYP level for their μ and μ42 coordination properties with the transition metals. Based on known alkyne compounds, transition metal fragments [W2(μ-NH)(Cp)2(Cl)2] and [Fe4(CO)12] have been chosen. The SBKJC relativistic effective core potentials and their associated basis sets were used on W, Fe, Sn and Pb, and the 6-31G(d) basis set was used on all other elements. All the complexes of Si2H2, Ge2H2, Sn2H2 and Pb2H2 are found to be local minima. The trans-twist nature of the ligand A2H2 (A = Si-Pb) is large in μ-coordinated complexes of W, and it is very small in μ42 coordinated complexes of Fe. The electronic structure of these complexes was investigated using fragment molecular orbital method (FMO).  相似文献   

18.
Methane formation from acetate in cell suspensions of Methanosarcina barkeri was inhibited by low concentrations (5 M) of propyl iodide. Inhibition was abolished by short exposure of the suspension to light which strongly indicates that a corrinoid enzyme is involved in methanogenesis from acetate. Propyl iodide (5M) had no effect on the exchange reaction between the carboxyl group of acetate and 14CO2, and on methane formation from methanol, from H2 and methanol, or from H2 and CO2. These findings indicate that the proposed corrinoid enzyme has a role in methyl group transfer to coenzyme M after C-C cleavage of acetate.Dedicated to Professor N. Pfennig on the occasion of his 60th birthday  相似文献   

19.
Nitrogen nutrition of rice plants under salinity   总被引:1,自引:0,他引:1  
Two rice (Oryza sativa L.) cultivars, Koshihikari and Pokkali, were grown in solution culture at three concentrations of NaCl or Na2SO4 [0 (S0), 50 (S1), and 100 (S2) mmol dm–3] and three N contents [0.7 (N1), 7 (N2) and 14 (N3) mmol dm–3]. Salinity significantly decreased dry matter of both cultivars. Pokkali had better growth than Koshihikari under both saline and non-saline conditions. Applications of N enhanced development of shoot dry mass under S0 and S1 treatments up to N2. Under S2, N application had no effect on shoot dry mass of both cultivars. Root dry mass of both cultivars decreased with increasing N application at S1 and S2. Shoot and root NO3-N content in both rice cultivars increased with increasing N concentration in the nutrient solutions. The absorption of NO3-N was less in Koshihikari than Pokkali plants, and also was much less in Cl than SO4 2– salinity suggesting the antagonism between Cl and NO3 . In addition a significant negative correlation between concentrations of NO3-N and Cl in the shoots or roots was observed in both cultivars  相似文献   

20.
The addition of 20 mM MoO42− (molybdate) to a reduced marine sediment completely inhibited the SO42− reduction activity by about 50 nmol g−1 h−1 (wet sediment). Acetate accumulated at a constant rate of about 25 nmol g−1 h−1 immediately after MoO42− addition and gave a measure of the preceding utilization rate of acetate by the SO42−-reducing bacteria. Similarly, propionate and butyrate (including isobutyrate) accumulated at constant rates of 3 to 7 and 2 to 4 nmol g−1 h−1, respectively. The rate of H2 accumulation was variable, and a range of 0 to 16 nmol g−1 h−1 was recorded. An immediate increase of the methanogenic activity by 2 to 3 nmol g−1 h−1 was apparently due to a release of the competition for H2 by the absence of SO42− reduction. If propionate and butyrate were completely oxidized by the SO42−-reducing bacteria, the stoichiometry of the reactions would indicate that H2, acetate, propionate, and butyrate account for 5 to 10, 40 to 50, 10 to 20, and 10 to 20%, respectively, of the electron donors for the SO42−-reducing bacteria. If the oxidations were incomplete, however, the contributions by propionate and butyrate would only be 5 to 10% each, and the acetate could account for as much as two-thirds of the SO42− reduction. The presence of MoO42− seemed not to affect the fermentative and methanogenic activities; an MoO42− inhibition technique seems promising in the search for the natural substrates of SO42− reduction in sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号