首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
To understand the composition and structure of microbial communities in acid (pH 3.0) mine drainage (AMD) associated with pyrite mine tailings in Anhui Province, China, molecular diversities of 16S rRNA and 18S rRNA genes were examined using a PCR-based cloning approach. Bacterial, archaeal and microeukaryotic clone libraries were constructed. In contrast to typical dominance of autotrophic acidophiles, genus Acidiphilium, which consists of mixotrophic acidophiles capable of chemoorganotrophic and photosynthetic metabolisms, was the largest group in the bacterial clone library. These mixotrophic organisms may be advantageous in the oligotrophic AMD environment of the study site (certain amounts of dissolved organic carbon and light) by switching between two modes of metabolisms. Unexpectedly, a large fraction of bacterial clones (12.7%) were related to the neutrophilic genus Legionella, which can cause Legionnaires’ disease, a potentially lethal pneumonia. The eukaryotic 18S rRNA gene sequences were mostly related to Oxytricha, Nuclearia, and Penicillium. In the archaeal clone library, all the sequences were affiliated to the phylum Crenarchaeota, while the Euryarchaeota was not present.  相似文献   

2.
To study how archaeal community responds to environmental changes, we investigated archaeal community structures in waters of three Tibetan saline lakes in northwestern China (Gahai, Xiaochaidan, and Charhan Lakes) with 16S rRNA gene phylogenetic analysis. Temperature, pH, and water chemistry (major anions and cations) of the lakes were measured. Three archaeal clone libraries were constructed with a total of 297 sequences. Incorporating our previous data obtained from other lakes on the Tibetan Plateau, we performed statistical analyses to identify dominant environmental parameters that could account for the observed variations in archaeal community structure. We concluded that salinity and water chemistry (Na and bicarbonate concentration in particular) played an important role in shaping archaeal community. In particular, the relative abundance of archaeal 16S rRNA genes affiliated with the Halobacteriales of the Euryarchaeota increased with salinity, whereas that of crenarchaeotal 16S rRNA gene sequences showed the opposite trend. Crenarchaeotal 16S rRNA gene sequences were retrieved from lake waters with salinity up to 28.3%. These results have important implications for our understanding of response of archaeal community to environmental changes in high-altitude lake ecosystems.  相似文献   

3.
The abundance, diversity and composition of bacterial and archaeal communities in a freshwater iron-rich microbial mat were investigated using culture-dependent and culture-independent methods. The sampling site is a mixing zone where ferrous-iron-rich fluids encounter oxygen-rich environments. Quantitative PCR analysis shows that Bacteria dominated the mat community (>99% of the total cell numbers). Phylotypes related to iron-oxidizers in Gallionellaceae, methano/methylotrophs in Methylophilaceae and Methylococcaceae, sulfide-oxidizers in Sulfuricurvum and an uncultured clone group, called Terrestrial group I or the 1068 group, in the Epsilonproteobacteria were detected in the clone library from the original sample and/or the enrichment cultures. This result suggests that these members may play a role in Fe, S and C cycling in the mixing zone. Although Archaea were minor constituents numerically, phylogenetic analysis indicates that unique and diverse yet-uncultivated Archaea are present in the iron-rich mat. The phylotypes of these yet-uncultivated Archaea belong to environmental clone groups that have been recovered from other mixing zones in terrestrial and marine environments, and some of our phylotypes have significantly low similarity (80% or lower) with the archaeal clones reported previously. Our results provide further insights into the bacterial and archaeal communities in a microaerobic iron-rich freshwater environment in mixing zones.  相似文献   

4.
We employed culture-dependent and -independent techniques to study microbial diversity in Lake Chaka, a unique hypersaline lake (32.5% salinity) in northwest China. It is situated at 3,214 m above sea level in a dry climate. The average water depth is 2 to 3 cm. Halophilic isolates were obtained from the lake water, and halotolerant isolates were obtained from the shallow sediment. The isolates exhibited resistance to UV and gamma radiation. Microbial abundance in the sediments ranged from 108 cells/g at the water-sediment interface to 107 cells/g at a sediment depth of 42 cm. A major change in the bacterial community composition was observed across the interface. In the lake water, clone sequences affiliated with the Bacteroidetes were the most abundant, whereas in the sediments, sequences related to low G+C gram-positive bacteria were predominant. A similar change was also present in the archaeal community. While all archaeal clone sequences in the lake water belonged to the Halobacteriales, the majority of the sequences in the sediments were related to those previously obtained from methanogenic soils and sediments. The observed changes in the microbial community structure across the water-sediment interface were correlated with a decrease in salinity from the lake water (32.5%) to the sediments (approximately 4%). Across the interface, the redox state also changed from oxic to anoxic and may also have contributed to the observed shift in the microbial community.  相似文献   

5.
铜绿山铜矿是世界开采时间最长的矿井之一,在开采过程中有许多矿井被废弃,许多废弃的矿井内产生了大量的对环境有害的酸性矿坑水.酸性矿坑水取自铜绿山铜矿某废弃矿井,利用限制性酶切片断多样性分析(RFLP分析)对酸性矿坑水中的微生物生态多样性进行了研究.研究表明,酸性矿坑水呈酸性,相对于其他极端与非极端生态环境,酸性矿坑水中的细菌与古菌的群落多样性较低.RFLP分析与系统发育分析表明,酸性矿坑水中细菌主要由A.fcrrooxidans(属于gamma-Proteobacteria)和L.ferrooxidans(属于Nitospira)成;古菌主要由Thermoplasma相关古菌组成.在这种封闭环境的酸性矿坑水中首次发现了类似于产甲烷古菌的克隆片断,其占古菌种群的四分之一左右.本研究将促进对酸性矿坑水中细菌及古菌群落组成及其对酸性矿坑水产生的作用的研究.  相似文献   

6.
At Iron Mountain, CA, there is an extreme occurrence of acid mine drainage (AMD). This is a result of past mining activity that has exposed a sulfide ore body to weathering and microbial activity. This study presents seven new oligonucleotide probes for the detection of microorganisms at this AMD site by fluorescent in situ hybridization. In the design of these probes we have accounted for a large body of 16S rRNA sequence data recently compiled by us. This was obtained by PCR and cloning directly from environmental DNA and was mostly represented by novel sequences. The probes were developed to include detection of novel and uncultivated organisms. This includes detection for the Thermoplasmales group, a new group of Leptospirillum, the genus Sulfobacillus, the Acidiphilium genus, Acidimicrobium and relatives, and for organisms within the delta Proteobacteria. These probes have been used to examine the abundance and distribution of organisms, including novel and uncultivated taxa, and to clarify their potential contributions to AMD production at the site. We anticipate that these probes will be useful tools for exploration of the microbiology of other natural acidic environments and bioleaching systems.  相似文献   

7.
8.
Metagenomic approach permits us to obtain the latent resources from culturable and unculturable microorganisms in ecosystem. In this study, high-throughput sequencing was practiced to comprehensively probe prokaryotic community within extreme acidic environment of Baiyin open-pit mine stope, which varied in pH and other physicochemical parameters. Bioinformatics analysis was further accomplished to process millions of Illumina reads and analyzed alpha and beta diversities, and prokaryotic community profile in different samples obtained from the acidic mine stope. Diversity indices such as ACE, Chao, Shannon, and Simpson were varied among samples. Both taxon richness and evenness were significantly higher in the solid samples than that of the water samples. Taxonomic diversity was unexpectedly higher within confined pit ecosystem. Most of the sequences were assigned to phyla Proteobacteria, Firmicutes, and Acidobacteria. In archaea, Euryarchaeota and Thaumarchaeota were major phyla reported, however, archaea occupied very little share in the metagenome. At class level, variation in community structure was higher within samples. Among iron- and sulfur-related acidophiles, 30.8% of the sequences were unidentified at genera level, while the remaining were dominated by sulfur and/or iron oxidizing Acidithiobacillus and heterotrophic Acidiphilum related groups. The community profile of solid and water groups was different and metagenomic biomarkers were higher in solid, while acidophiles and archaea were reported only in water group by using LEfSe. Among samples, community structure and abundance was varied in terms of OTUs abundance, which clearly indicates spatial variation and proposed the influence of physicochemical and geochemical properties on phylogenetic diversity. This study offers numerous treasured datasets for better understanding the community composition under the influence of geochemical and physicochemical factors and possible novelty in terms of taxonomic/phylogenetic diversity in acidic ecosystem.  相似文献   

9.
Archaeal Diversity in the Haloalkaline Lake Elmenteita in Kenya   总被引:1,自引:0,他引:1  
A non-culture approach was used to study the archaeal diversity in Lake Elmenteita, Kenya. Five different sampling points were selected randomly within the lake. Wet sediments and water samples were collected from each sampling point. In addition, dry mud cake was collected from three points where the lake had dried. DNA was extracted from these samples and the 16S rRNA genes were amplified using primers described to be Domain-specific for Archaea. Eleven clone libraries were constructed using PCR-amplified 16S rRNA genes. A total of 1,399 clones were picked and analysed via ARDRA. 170 ARDRA patterns were unique and the respective clones were selected for sequencing. 149 clones gave analysable sequences. BLAST analysis showed that 49 belong to the Domain Archaea while the others were either chimera or affiliated to eukaryotic taxa. Comparative sequence analysis of archaeal clones affiliated them to a wide range of genera. The order Halobacteriales was represented by members of the genera Natronococcus, Halovivax, Halobiforma, Halorubrum, and Halalkalicoccus. The highest percentage (46%) of the clones, however, belonged to uncultured members of the Domain Archaea in the order Halobacteriales. The results show that the archaeal diversity in the lake could be higher than previously reported.  相似文献   

10.
Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4‐region gene fragments obtained by PCR amplification of community genomic DNA with bacterial‐ or archaeal‐specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158 686 bacterial and 225 591 archaeal sequences from 20 sediment samples, representing five 2‐cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor‐joining analysis using Chao–Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96–99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus‐related sequence abundance was correlated with high solid‐phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between sampling times, and increased to high relative abundance with sediment depth. These results provide further evidence that marine sediment microbial community composition can be structured according to sediment chemistry and suggest the expansion of hypoxia in coastal waters may alter sediment microbial communities involved in carbon and nitrogen cycling.  相似文献   

11.
Saline lakes at high altitudes represent an important and extreme microbial ecosystem, yet little is known about microbial diversity in such environments. The objective of this study was to examine the change of microbial diversity from the bottom of the lake to sediments of 40 cm in depth in a core from Qinghai Lake. The lake is saline (12.5 g/L salinity) and alkaline (pH 9.4) and is located on the Qinghai–Tibetan Plateau at an altitude of 3196 m above sea level. Pore water chemistry of the core revealed low concentrations of sulfate and iron (<1 mM), but high concentrations of acetate (40–70 mM) and dissolved organic carbon (1596–5443 mg/L). Total organic carbon and total nitrogen contents in the sediments were ∼2 and <0.5%, respectively. Acridine orange direct count data indicated that cell numbers decreased from 4 × 109 cells/g at the water–sediment interface to 6× 107 cells/g wet sediment at the 40-cm depth. This change in biomass was positively correlated with acetate concentration in pore water. Phospholipid fatty acid (PLFA) community structure analyses determined decrease in the proportion of the Proteobacteria and increase in the Firmicutes with increased depth. Characterization of small subunit (SSU) rRNA genes amplified from the sediments indicated a shift in the bacterial community with depth. Whereas the α-, β-, and γ-Proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) were dominant at the water–sediment interface, low G + C gram-positive bacteria (a subgroup of Firmicutes) became the predominant group in the anoxic sediments. Both PLFA and the sequence data showed similar trend. The Proteobacteria, CFB, and gram-positive bacteria are present in other saline lakes, but thepresence of Actinobacteria and Acidobacteria/Holophaga in significant proportions in the Qinghai Lake sediments appears to be unique. The archaeal diversity was much lower, and clone sequences could be grouped inthe Euryarchaeota and Crenarchaeota domains. The archaeal clones were not related to any known cultures but to sequences previously found in methane-rich sediments. Acetate-utilizing methanogens were isolated from sediment incubations, and α- and γ-proteobacterial isolates were obtained from a water sample from the lakebottom (23 m). Our data collectively showed that the observed diversity and shift in the community structure with depth was correlated with geochemical parameters (the redox state and availability of electron acceptor and donor). Heterotrophic methanogenesis is possibly adominant metabolic process in the Qinghai Lake sediments. These results reinforce the importance of geochemical controls on microbial ecology in saline and alkaline lake environments.  相似文献   

12.
Sediment and water samples collected from one acidic and three alkaline high temperature hot springs at the Tengchong terrestrial geothermal field, Southwest China, were examined using mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contained relatively high concentrations of S, Fe and N chemical species. Specifically, the acidic water was rich in Fe2+, SO42? and NH4+, while the alkaline waters were high in NO3?, H2S and S2O3?. Analyses of 16S rRNA gene sequences showed their bacterial communities were dominated by phyla Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archaeal clone libraries were dominated by orders Desulfurococcales, Sulfolobales, and Thermoproteales. Potential S-, N- and Fe-metabolizing prokaryotes were present at a relatively high proportion, but with large differences in the diversity and metabolic functions of each sample. These findings provide implications for uncovering microbial functions in elemental biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities in geothermal sediments were related to different in situ physicochemical conditions; ii). the S-, N- and Fe-related prokaryotes would take advantage of the strong chemical disequilibria in the hot springs; and iii). in return, their metabolic activities could promote the transformation of the S, Fe and N chemical species, thereby forming the basis of biogeochemical cycles in the terrestrial geothermal environments.  相似文献   

13.
Mining of metallic sulfide ore produces acidic water with high metal concentrations that have harmful consequences for aquatic life. To understand the composition and structure of microbial communities in acid mine drainage (AMD) waters associated with Zn mine tailings, molecular diversity of 16S genes was examined using a PCR, cloning, and sequencing approach. A total of 78 operational taxonomic units (OTUs) were obtained from samples collected at five different sites in and around mining residues in Sepetiba Bay, Brazil. We analyzed metal concentration, physical, chemical, and microbiological parameters related to prokaryotic diversity in low metal impacted compared to highly polluted environments with Zn at level of gram per liter and Cd–Pb at level of microgram per liter. Application of molecular methods for community structure analyses showed that Archaea and Bacteria groups present a phylogenetic relationship with uncultured environmental organisms. Phylogenetic analysis revealed that bacteria present at the five sites fell into seven known divisions, α-Proteobacteria (13.4%), β-Proteobacteria (16.3%), γ-Proteobacteria (4.3%), Sphingobacteriales (4.3%), Actinobacteria (3.2%) Acidobacteria (2.1%), Cyanobacteria (11.9%), and unclassified bacteria (44.5%). Almost all archaeal clones were related to uncultivated Crenarchaeota species, which were shared between high impacted and low impacted waters. Rarefaction curves showed that bacterial groups are more diverse than archaeal groups while the overall prokaryotic biodiversity is lower in high metal impacted environments than in less polluted habitats. Knowledge of this microbial community structure will help in understanding prokaryotic diversity, biogeography, and the role of microorganisms in zinc smelting AMD generation and perhaps it may be exploited for environmental remediation procedures in this area.  相似文献   

14.
Wetland ecosystems are the natural centers of freshwater formation in northern Russia lowland landscapes. The humic acidic waters formed in bogs feed the numerous lakes of the northern regions. One milliliter of the water in these lakes contains up to 104 ultrasmall microbial cells that pass through “bacterial” filters with a pore size of 0.22 μm. The vast majority of these cells do not grow on nutrient media and cannot be identified by routine cultivation-based approaches. Their identification was performed by analysis of clone libraries obtained by PCR amplification of archaeal and bacterial 16S rRNA genes from the fraction of cells collected from water filtrates of acidic lakes. Most of the obtained bacterial 16S rRNA gene sequences represented the class Betaproteobacteria and exhibited the highest homology of (94–99%) with 16S rRNA genes of representatives of the genera Herbaspirillum, Herminiimonas, Curvibacter, and Burkholderia. The archaeal 16S rRNA gene clone library comprised genes of Euryarchaeota representatives. One-third of these genes exhibited 97–99% homology to the 16S rRNA genes of taxonomically described organisms of the orders Methanobacteriales and Methanosarcinales. The rest of the cloned archaeal 16S rRNA genes were only distantly related (71–74% homology) to those in all earlier characterized archaea.  相似文献   

15.
Nitrification represents one of the key steps in the global nitrogen cycle. While originally considered an exclusive metabolic capability of bacteria, the identification of the Thaumarchaeota revealed that ammonia-oxidizing archaea (AOA) are also important contributors to this process, particularly in acidic environments. Nonetheless, the relative contribution of AOA to global nitrification remains difficult to ascertain, particularly in underexplored neutrophilic and alkalinophilic terrestrial systems. In this study we examined the contribution of AOA to nitrification within alkaline (pH 8.3–8.7) cave environments using quantitative PCR, crenarchaeol lipid identification and measurement of potential nitrification rates. Our results showed that AOA outnumber ammonia-oxidizing bacteria (AOB) by up to four orders of magnitude in cave sediments. The dominance of Thaumarchaeota in the archaeal communities was confirmed by both archaeal 16S rRNA gene clone library and membrane lipid analyses, while potential nitrification rates suggest that Thaumarchaeota may contribute up to 100% of ammonia oxidation in these sediments. Phylogenetic analysis of Thaumarchaeota amoA gene sequences demonstrated similarity to amoA clones across a range of terrestrial habitats, including acidic ecosystems. These data suggest that despite the alkaline conditions within the cave, the low NH3 concentrations measured continue to favor growth of AOA over AOB populations. In addition to providing important information regarding niche differentiation within Thaumarchaeota, these data may provide important clues as to the factors that have historically led to nitrate accumulation within cave sediments.  相似文献   

16.

Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.  相似文献   

17.
We employed culture-dependent and -independent techniques to study microbial diversity in Lake Chaka, a unique hypersaline lake (32.5% salinity) in northwest China. It is situated at 3,214 m above sea level in a dry climate. The average water depth is 2 to 3 cm. Halophilic isolates were obtained from the lake water, and halotolerant isolates were obtained from the shallow sediment. The isolates exhibited resistance to UV and gamma radiation. Microbial abundance in the sediments ranged from 10(8) cells/g at the water-sediment interface to 10(7) cells/g at a sediment depth of 42 cm. A major change in the bacterial community composition was observed across the interface. In the lake water, clone sequences affiliated with the Bacteroidetes were the most abundant, whereas in the sediments, sequences related to low G+C gram-positive bacteria were predominant. A similar change was also present in the archaeal community. While all archaeal clone sequences in the lake water belonged to the Halobacteriales, the majority of the sequences in the sediments were related to those previously obtained from methanogenic soils and sediments. The observed changes in the microbial community structure across the water-sediment interface were correlated with a decrease in salinity from the lake water (32.5%) to the sediments (approximately 4%). Across the interface, the redox state also changed from oxic to anoxic and may also have contributed to the observed shift in the microbial community.  相似文献   

18.
Uncovering microbial diversity and their influencing factors is a primary goal for microbial ecology. In comparison with studies on bacterial diversity, limited is known about archaeal diversity and its response to influencing factors in lakes. Here, we investigated the archaeal community compositions (ACCs) and their correlation with spatial/environmental factors in the sediments from 38 Chinese lakes with a large range of salinity (0.2–363.1 g/l) and pairwise geographic distance (3–3656 km). Illumina-Miseq sequencing was employed to characterize the ACCs in the lakes samples. The results showed that Euryarchaeota, Bathyarchaeota, Thaumarchaeota, and Woesearchaeota were the dominant archaeal phyla in the studied samples, and they each can occur in the samples with a wide range of salinity (0.2–363.1 g/l) although their abundance was relatively low (<1%) in certain samples. The Thaumarchaeota and Woesearchaeota phyla dominated (up to 90% of total sequences) some lake sediments. Mantel test indicated that compositions of total archaeal community and the Euryarchaeota and Woesearchaeota populations were significantly (p < 0.05) correlated with geographic distance in the studied lake sediments. Salinity was the most important environmental factor influencing the compositions of the total archaeal community and the Euryarchaeota population, while it did not show significant influence on the distribution of the Woesearchaeota and Thaumarchaeota populations. Taken together, this survey expands our current knowledge on the ecology of lacustrine archaea and give clues for studying the archael role in biogeochemical cycles in lakes.  相似文献   

19.
The diversity of methanogenic archaea in enrichment cultures established from the sediments of Lonar Lake (India), a soda lake having pH ≈ 10, was investigated using 16S rDNA molecular phylogenetic approach. Methanogenic enrichment cultures were developed in a medium that simulated conditions of soda lake with three different substrates viz., H2:CO2, sodium acetate, and trimethylamine (TMA), at alkaline pH. Archaeal 16S rRNA clone libraries were generated from enrichment cultures and 13 RFLP groups were obtained. Representative sequence analysis of each RFLP group indicated that the majority of the 16S rRNA gene sequences were phylogenetically affiliated with uncultured Archaea. Some of the groups may belong to new archaeal genera or families. Three RFLP groups were related to Methanoculleus sp, while two related to Methanocalculus sp. 16S rRNA gene sequences found in Lonar Lake were different from sequences reported from other soda lakes and more similar to those of oil reservoirs, palm oil waste treatment digesters, and paddy fields. In culture-based studies, three isolates were obtained. Two of these were related to Methanoculleus sp. IIE1 and one to Methanocalculus sp. 01F97C. These results clearly show that the Lonar Lake ecosystem harbors unexplored methanogens.  相似文献   

20.
Archaeal 16S rRNA gene clone libraries using PCR amplicons from eight different layers of the MD06-3051 core were obtained from the tropical Western Pacific sediments. A total of 768 clones were randomly selected, and 264 representative clones were sequenced by restriction fragment length polymorphism. Finally, 719 valid clones and 104 operational taxonomic units were identified after chimera-check and ≥97% similarity analysis. The phylogenetic analysis of 16S rDNA sequences obtained from sediment samples were very diverse and showed stratification with depth. Majority of the members were most closely related to uncultivated groups and physiologically uncharacterized assemblages. All phylotypes were affiliated with Crenarchaeota (76%) and Euryarchaeota (24%), respectively. Deep-sea archaeal group (DSAG, 41% of total clones) and miscellaneous crenarchaeotic group (MCG, 29% of total clones) belonging to Crenarchaeota were the most predominant archaeal 16S rDNA phylotypes in clone libraries. Phylotypes in this study shared high similarity with those in subsurface sediments from Peru Margin sites, which indicated that different geographical zones might host similar members of archaeal populations based on similar sedimentary environments. In our study, members of DSAG and MCG seemed to dominate certain layers of the nonhydrate sediments, suggesting a wide ecophysiological adaptation than previously appreciated. The spatial distribution and community structure of these groups might vary with the different geochemical gradients of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号