首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model that accurately predicts the effects of cellular size and electric field strength on electrophoretic mobility has been developed. Previous models have predicted that electrophoretic mobility (EPM) is dependent only on cell surface charge, bath viscosity and ionic strength of the electrolyte. However, careful analysis of experimental data from the literature shows that these models do not accurately depict the relationship between chemically determined surface charge and observed mobility. We propose a new model that accounts for electrically driven redistribution of mobile surface charge islands, such as the recently proposed lipid raft structures. This model predicts electrophoretic mobility as a function of a new dimensionless quantity, A, that incorporates the cell radius, the electric field strength, and the average diameter of charged membrane complexes.  相似文献   

2.
A quartz crystal microbalance with dissipation (QCM-D) is used to determine the adsorption rate of a supercoiled plasmid DNA onto a quartz surface and the structure of the resulting adsorbed DNA layer. To better understand the DNA adsorption mechanisms and the adsorbed layer physicochemical properties, the QCM-D data are complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The data from simultaneous monitoring of variations in frequency and dissipation energy with the QCM-D suggest that the adsorbed DNA layer is more rigid in the presence of divalent (calcium) cations compared to monovalent (sodium) cations. Adsorption rates are significantly higher in the presence of calcium, attaining a transport-limited rate at about 1 mM Ca2+. Results further suggest that in low ionic strength solutions containing 1 mM Ca2+ and in moderately high ionic strength solutions containing 300 mM NaCl, plasmid DNA adsorption to negatively charged mineral surfaces is irreversible.  相似文献   

3.
RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na(+)]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg(2+) salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs.  相似文献   

4.
Electrolyte Effects on Attachment of an Estuarine Bacterium   总被引:5,自引:12,他引:5       下载免费PDF全文
The effect of electrolyte concentration on attachment of Vibrio alginolyticus to hydroxyapatite was determined. Bacterial affinity for attachment to the surface and surface capacity were derived from linearization of bacterial adsorption isotherms. At low concentrations (<0.1 M) the affinity of the bacteria for the surface increased with increasing ionic strength, in agreement with the D.L.V.O. theory of colloid interaction. At higher concentrations, bacterial affinity for the surface decreased with increasing concentration of cations and was not related to ionic strength changes in the medium. These results demonstrate a change in the mechanism by which salts affect bacterial attachment at salt concentrations above 0.1 M. The results are consistent with the relationship between the proportion of attached bacteria and salinity observed in previously published field studies. The results may also resolve differences between various attachment studies carried out in different ionic strength media, utilizing different bacteria, surfaces, and experimental methods.  相似文献   

5.
6.
The adsorption of DNA molecules onto a flat mica surface is a necessary step to perform atomic force microscopy studies of DNA conformation and observe DNA-protein interactions in physiological environment. However, the phenomenon that pulls DNA molecules onto the surface is still not understood. This is a crucial issue because the DNA/surface interactions could affect the DNA biological functions. In this paper we develop a model that can explain the mechanism of the DNA adsorption onto mica. This model suggests that DNA attraction is due to the sharing of the DNA and mica counterions. The correlations between divalent counterions on both the negatively charged DNA and the mica surface can generate a net attraction force whereas the correlations between monovalent counterions are ineffective in the DNA attraction. DNA binding is then dependent on the fractional surface densities of the divalent and monovalent cations, which can compete for the mica surface and DNA neutralizations. In addition, the attraction can be enhanced when the mica has been pretreated by transition metal cations (Ni(2+), Zn(2+)). Mica pretreatment simultaneously enhances the DNA attraction and reduces the repulsive contribution due to the electrical double-layer force. We also perform end-to-end distance measurement of DNA chains to study the binding strength. The DNA binding strength appears to be constant for a fixed fractional surface density of the divalent cations at low ionic strength (I < 0.1 M) as predicted by the model. However, at higher ionic strength, the binding is weakened by the screening effect of the ions. Then, some equations were derived to describe the binding of a polyelectrolyte onto a charged surface. The electrostatic attraction due to the sharing of counterions is particularly effective if the polyelectrolyte and the surface have nearly the same surface charge density. This characteristic of the attraction force can explain the success of mica for performing single DNA molecule observation by AFM. In addition, we explain how a reversible binding of the DNA molecules can be obtained with a pretreated mica surface.  相似文献   

7.
Considering only nearest neighbor interactions, an expression is obtained for the grand partition function for the adsorption of two kinds of monovalent positive ions at a long chain of one type of monovalent negative fixed sites in an electric field. Expressions are obtained for the fractions of sites which are occupied by each kind of ion as well as of those which are unoccupied as a function of the potential of the electric field.  相似文献   

8.
Desorption of three oral bacterial strains from a salivary conditioning film on an indium tin oxide electrode during application of a positive (bacterial adhesion to the anode) or a negative electric current was studied in a parallel plate flow chamber. Bacterial adhesion was from a flowing suspension of high ionic strength, after which the bacterial suspension was replaced by a low ionic strength solution without bacteria and currents ranging from -800 to +800 microA were applied. Streptococcus oralis J22 desorbed during application of a positive and negative electric current with a desorption probability that increased with increasing electric current. Two actinomyces strains, however, could not be stimulated to desorb by the electric currents applied. The desorption forces acting on adhering bacteria are electroosmotic in origin and working parallel to the electrode surface in case of a positive current, whereas they are electrophoretic and electrostatic in origin and working perpendicular to the surface in case of a negative current. By comparison of the effect of positive and negative electric currents, it can be concluded that parallel forces are more effective in stimulating bacterial desorption than perpendicular forces. The results of this study point to a new pathway of cleaning industrial and biomedical surfaces without the use of detergents or biocides.  相似文献   

9.
The denaturation of Escherichia coli acyl carrier protein (ACP) in buffers containing both monovalent and divalent cations was followed by variable-temperature NMR and differential scanning calorimetry. Both high concentrations of monovalent salts (Na+) and moderate concentrations of divalent salts (Ca2+) raise the denaturation temperature, but calorimetry indicates that a significant increase in the enthalpy of denaturation is obtained only with the addition of a divalent salt. NMR experiments in both low ionic strength monovalent buffers and low ionic strength monovalent buffers containing calcium ions show exchange between native and denatured forms to be slow on the NMR time scale. However, in high ionic strength monovalent buffers, where the temperature of denaturation is elevated as it is in the presence of Ca2+, the transition is fast on the NMR time scale. These results suggest that monovalent and divalent cations may act to stabilize ACP in different ways. Monovalent ions may nonspecifically balance the intrinsic negative charge of this protein in a way that is similar for native, denatured, and intermediate forms. Divalent cations provide stability by binding to specific sites present only in the native state.  相似文献   

10.
An extension to polyelectrolyte solutions of Onsager's field-dissociation relation for weak electrolytes can be derived in a simple way. It is found that, except in the limit of zero ionic strength, a strong applied electric field prevents counterion condensation from proceeding to completion. The extent of incompleteness initially varies linearly with the applied field. The field-dissociation relation can easily be incorporated into the theory of ionic effects on the stability of ordered polynucleotide Structures, whereupon a dependence of the stability on field strength emerges. An explicit calculation for a cooperative transition of the DNA melting type is presented, and it is concluded that for sufficiently low ionic strengths, a field of the order of 10 kVcm may be able to induce, melting by lowering the Tm by a few degrees. The threshold effect found experimentally by Pörschke, and particularly the observed linear dependence of the threshold field on the logarithm of the ionic strength, appears here as a simple-consequence of the linear increase of the stabilization free energy with the logarithm of ionic strength.  相似文献   

11.
The interaction of calcium with gangliosides in bilayer membranes   总被引:1,自引:0,他引:1  
We studied the binding of calcium to bilayer membranes formed from mixtures of phosphatidylcholine and mono-, di-, or trisialoganglioside by measuring its effect on the electrophoretic mobility of multilamellar vesicles and the conductance of planar bilayers. In 0.001 M monovalent salt solutions the surface potential of the membranes is large and micromolar concentrations of calcium have a significant effect on the mobility and conductance. In 0.1 M monovalent salt solutions the surface potential is small and millimolar concentrations of calcium are required to affect these parameters. The strong apparent binding of calcium we observed at low ionic strength could be due to the nonspecific accumulation of calcium in the electrical diffuse double layer. To distinguish between this nonspecific effect and binding of calcium to the membrane, we substituted dimethonium for calcium. Dimethonium is a divalent cation that screens negative charges but does not bind to lipids. We also examined the effect of replacing phosphatidylcholine by monoolein: calcium binds to phosphatidylcholine but not to monoolein. We describe our electrophoretic mobility results by combining the Poisson-Boltzmann and Navier-Stokes equations with the Langmuir adsorption isotherm. We conclude that calcium binds weakly to gangliosides with an intrinsic association constant of less than 100 M-1, which is similar to the association constant of calcium with phospholipids.  相似文献   

12.
We have investigated the reduction of steady state sodium channel currents by a monovalent and a divalent guanidinium analogue. The amount of block by the divalent compound at a constant membrane potential was dramatically reduced by an increase in the internal salt concentration. Channel block by the monovalent molecule was a less steep function of salt concentration. These results would be expected if there were negative charges near the sodium pore that produced a local accumulation of the cationic blocking ions. According to this view, the ionic strength dependence of block results from changes in surface potential. The divalent blocker would be expected to be more sensitive to ionic strength owing to its larger valence. Our results can be quantitatively described by a simple ionic double-layer model with an effective surface charge density of about -1 e/250 A2 in the vicinity of the pore.  相似文献   

13.
The effects of ionic strength (10-1,000 mM) on the gating of batrachotoxin-activated rat brain sodium channels were studied in neutral and in negatively charged lipid bilayers. In neutral bilayers, increasing the ionic strength of the extracellular solution, shifted the voltage dependence of the open probability (gating curve) of the sodium channel to more positive membrane potentials. On the other hand, increasing the intracellular ionic strength shifted the gating curve to more negative membrane potentials. Ionic strength shifted the voltage dependence of both opening and closing rate constants of the channel in analogous ways to its effects on gating curves. The voltage sensitivities of the rate constants were not affected by ionic strength. The effects of ionic strength on the gating of sodium channels reconstituted in negatively charged bilayers were qualitatively the same as in neutral bilayers. However, important quantitative differences were noticed: in low ionic strength conditions (10-150 mM), the presence of negative charges on the membrane surface induced an extra voltage shift on the gating curve of sodium channels in relation to neutral bilayers. It is concluded that: (a) asymmetric negative surface charge densities in the extracellular (1e-/533A2) and intracellular (1e-/1,231A2) sides of the sodium channel could explain the voltage shifts caused by ionic strength on the gating curve of the channel in neutral bilayers. These surface charges create negative electric fields in both the extracellular and intracellular sides of the channel. Said electric fields interfere with gating charge movements that occur during the opening and closing of sodium channels; (b) the voltage shifts caused by ionic strength on the gating curve of sodium channels can be accounted by voltage shifts in both the opening and closing rate constants; (c) net negative surface charges on the channel's molecule do not affect the intrinsic gating properties of sodium channels but are essential in determining the relative position of the channel's gating curve; (d) provided the ionic strength is below 150 mM, the gating machinery of the sodium channel molecule is able to sense the electric field created by surface changes on the lipid membrane. I propose that during the opening and closing of sodium channels, the gating charges involved in this process are asymmetrically displaced in relation to the plane of the bilayer. Simple electrostatic calculations suggest that gating charge movements are influenced by membrane electrostatic potentials at distances of 48 and 28 A away from the plane of the membrane in the extracellular sides of the channel, respectively.  相似文献   

14.
Summary The influence of the ionic strength of the medium on the adsorption of bacteriophage T 2 to the surfaces of a mercury dropping electrode on one hand and ofbacteria E. coli B on the other hand was studied. The adsorption on the mercury surface was determined by measurement of the differential capacity of the electrode double layer, the adsorption to bacteria was estimated from the decrease of free phage particles in a bacterial suspension with time. The adsorption to the mercury electrode increases with increasing ionic strength of the medium, but adsorption to the surface of bacteria increases at first, has a maximum at concentrations between 0,1 to 0,5 M and decreases with further increase of ionic strength. The decrease of adsorption of phage to the bacterial surface is assumed to be caused by the blocking of specific sites on the bacterial surface by adsorbed ions which sterically prevent the adsorption of the phage. Such specific sites are not present on the electrode surface, therefore adsorption increases further with increasing ionic strength probably due to the neutralization of surface charges of the phage and of the electrode. The saturated surface-concentration of the phage s was calculated from the dependence of the differential capacity on the concentration. It is concluded from s value obtained that the phage particles are scattered with wide intervals on the electrode surface with a degree of coverage of approximately 140.Abbreviations used DNA deoxyribonucleic acid - N Avogadro number The authors wishes to express their gratitude to the late Prof.Ferdinand Hercík, director of the Institute of Biophysics, for the initiation of this work and stimulating interest. The authors are also indebted to Dr. J.Koudelka for his kind gift of phage T 2 sample and to Dr. M.Vízdalová for her valuable comments during preparation of this article.  相似文献   

15.
Peripheral subunit binding domains (PSBDs) are integral parts of large multienzyme complexes involved in carbohydrate metabolism. PSBDs facilitate shuttling of prosthetic groups between different catalytic subunits. Their protein surface is characterized by a high density of positive charges required for binding to subunits within the complex. Here, we investigated folding thermodynamics and kinetics of the human PSBD (HSBD) using circular dichroism and tryptophan fluorescence experiments. HSBD was only marginally stable under physiological solvent conditions but folded within microseconds via a barrier‐limited apparent two‐state transition, analogous to its bacterial homologues. The high positive surface‐charge density of HSBD leads to repulsive Coulomb forces that modulate protein stability and folding kinetics, and appear to even induce native‐state movement. The electrostatic strain was alleviated at high solution‐ionic‐strength by Debye‐Hückel screening. Differences in ionic‐strength dependent characteristics among PSBD homologues could be explained by differences in their surface charge distributions. The findings highlight the trade‐off between protein function and stability during protein evolution.  相似文献   

16.
The effects of transmembrane electric potential difference and ionic strength on the permeation of tryptamine and indoleacetic acid across a Caco-2 cell monolayer were examined. A decrease in the transmembrane electric potential difference caused by the addition of potassium ion to the transport buffer had no effect on the permeation rate of either compound. On the other hand, an increase in ionic strength resulted in a decrease in the permeation rate of tryptamine and an increase in the permeation rate of indoleacetic acid. The changes in the permeation rate with changes in the ionic strength were correlated with the membrane surface potential monitored by 1-anilino-8-naphthalenesulfonic acid (ANS), a fluorescent probe. We tested these effects using several other cationic and anionic compounds. These effects of ionic strength were found to be common to all drugs tested. The compound that showed a relatively lower permeation rate was given relatively stronger effect. The possibility of overestimation or underestimation caused by these effects should be considered when the permeation of an ionic compound is evaluated using a cell monolayer system.  相似文献   

17.
The effects of transmembrane electric potential difference and ionic strength on the permeation of tryptamine and indoleacetic acid across a Caco-2 cell monolayer were examined. A decrease in the transmembrane electric potential difference caused by the addition of potassium ion to the transport buffer had no effect on the permeation rate of either compound. On the other hand, an increase in ionic strength resulted in a decrease in the permeation rate of tryptamine and an increase in the permeation rate of indoleacetic acid. The changes in the permeation rate with changes in the ionic strength were correlated with the membrane surface potential monitored by 1-anilino-8-naphthalenesulfonic acid (ANS), a fluorescent probe. We tested these effects using several other cationic and anionic compounds. These effects of ionic strength were found to be common to all drugs tested. The compound that showed a relatively lower permeation rate was given relatively stronger effect. The possibility of overestimation or underestimation caused by these effects should be considered when the permeation of an ionic compound is evaluated using a cell monolayer system.  相似文献   

18.
Summary The effect of the hydrophobicity and the electrostatic charge of bacterial cell surfaces on the initial phase of adsorption to inorganic porous supports with SiO2 or Al2O3 as the main components was investigated. The physicochemical surface properties of various Gram-positive and Gram-negative bacteria were characterized by water contact angle and zeta-potential measurements. The influence of microbial charge on adsorption was investigated by varying the ionic strength of the suspending liquid. The amount of Escherichia coli cells adsorbed to Siran and B supports increased with increasing electrolyte concentration. The effect of cell surface hydrophobicity on the extent of adsorption was demonstrated at high ionic strength (0.15 m NaCl) where charge effects were reduced. The supports applied in this study promoted the adsorption of hydrophilic bacteria. Offprint requests to: H. Ziehr  相似文献   

19.
The equation presented in the previous paper for steady-state membrane ionic current as a function of externally applied electric field strength is numerically analyzed to determine the influence of ionic and membrane molecule parameters on current densities. The model displays selectivity between different ions. A selectivity coefficient Si, defined as the ratio of current carried by an ionic species i at a given field strength to the current carried by a reference species at the same field strength, has the following properties: (a) Si is a function of electric field strength except for ion-membrane molecule interactions yielding velocity independent collision frequencies; (b) for ion-membrane molecule interactions characterized by a collision frequency that is a decreasing (increasing) function of increasing ionic velocity, ions whose Si > 1 (<1) at zero field strength will show maxima (minima) (minima[maxima]) in their Si vs. electric field strength curves.  相似文献   

20.
An experimental method is described for the measurement of charge transfer during bacterial adhesion in situ to a transparent, semiconducting indium tin oxide (ITO) coated glass plate in a parallel plate flow chamber. Bacterial adhesion is measured simultaneously with either the electric potential or the capacitance of the surface. Initial bacterial adhesion was accompanied by a change in electric potential of the surface with no measurable change in capacitance. Consequently, it can be assumed that the change in electric potential of the surface is due to charge transfer between bacteria and the surface, and it can be calculated that, on average, a charge of about 10(-14) C per bacterium is exchanged during initial adhesion, which corresponds to only several percent of the total surface charge of a bacterium. Charge transfer could either be to or from the bacterial cell surface, dependent on the bacterial strain involved and the ionic strength used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号