首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the biogeochemical constituents, microbial communities and functional genes (mcr and dsr) associated with anaerobic methane oxidation and sulfate reduction, and metabolic activities by sulfate reduction in the sulfate–methane transition zone (SMTZ) of gas-hydrate-bearing sediment of the Ulleung Basin in the East Sea. Maxima in the sulfate reduction rate (12.6 nmol cm?3 d?1), CO concentration (83 μM), and gene abundances of dsrA (9.1 × 106 copies cm?3) and mcrA (11.6 × 106 copies cm?3) occurred in the SMTZ. The peaks of CO consistently found in the SMTZ suggested that CO is an intermediate metabolic product related to methane oxidation. Candidate division JS1, the predominant bacterial group that comprised 59.0–63.7% of the 16S rRNA gene sequences, was recognized as an important organic carbon oxidizer. Both Marine Benthic Group D (MBGD) and Marine Benthic Group B (MBGB), which constituted 40.8–52.9 and 10.3–43.9% of the 16S rRNA gene sequences, respectively, were the dominant archaeal groups. Analysis of functional gene diversity revealed that anaerobic methanotroph-1-related phylotypes appeared to be the major CH4 oxidizer, whereas Firmicutes-like group was a predominant sulfate reducer in the 0.8 mbsf in SMTZ with low SO42? concentration. Overall results indicated that JS1 and two archaeal groups (MBGB and MBGD) seem to play a significant role in carbon and elements cycles in the gas-hydrate-bearing subsurface sediment of the Ulleung Basin.  相似文献   

2.
3.
Sediments from the Porangahau ridge, located off the northeastern coast of New Zealand, were studied to describe bacterial community structure in conjunction with differing biogeochemical regimes across the ridge. Low diversity was observed in sediments from an eroded basin seaward of the ridge and the community was dominated by uncultured members of the Burkholderiales. Chloroflexi/GNS and Deltaproteobacteria were abundant in sediments from a methane seep located landward of the ridge. Gas-charged and organic-rich sediments further landward had the highest overall diversity. Surface sediments, with the exception of those from the basin, were dominated by Rhodobacterales sequences associated with organic matter deposition. Taxa related to the Desulfosarcina/Desulfococcus and the JS1 candidates were highly abundant at the sulfate-methane transition zone (SMTZ) at three sites. To determine how community structure was influenced by terrestrial, pelagic and in situ substrates, sequence data were statistically analyzed against geochemical data (e.g. sulfate, chloride, nitrogen, phosphorous, methane, bulk inorganic and organic carbon pools) using the Biota-Environmental matching procedure. Landward of the ridge, sulfate was among the most significant structuring factors. Seaward of the ridge, silica and ammonium were important structuring factors. Regardless of the transect location, methane was the principal structuring factor on SMTZ communities.  相似文献   

4.
Numerous studies on marine prokaryotic communities have postulated that a process of anaerobic oxidation of methane (AOM) coupled with sulfate reduction (SR) is the main methane sink in the world''s oceans. AOM has also been reported in the deep biosphere. But the responses of the primary microbial players in eliciting changes in geochemical environments, specifically in methane and sulfate supplies, have yet to be fully elucidated. Marine mud volcanoes (MVs) expel a complex fluid mixture of which methane is the primary component, forming an environment in which AOM is a common phenomenon. In this context, we attempted to identify how the prokaryotic community would respond to changes in methane and sulfate intensities, which often occur in MV environments in the form of eruptions, diffusions or seepage. We applied an integrated approach, including (i) biochemical surveys of pore water originated from MV, (ii) in vitro incubation of mud breccia, and (iii) prokaryotic community structure analysis. Two distinct AOM regions were clearly detected. One is related to the sulfate methane transition zone (SMTZ) at depth of 30–55 cm below the sea floor (bsf); the second is at 165–205 cm bsf with ten times higher rates of AOM and SR. This finding contrasts with the sulfide concentrations in pore waters and supports the suggestion that potential AOM activity below the SMTZ might be an important methane sink that is largely ignored or underestimated in oceanic methane budget calculations. Moreover, the incubation conditions below the SMTZ favor the growth of methanotrophic archaeal group ANME-2 compared to ANME-1, and promote the rapid growth and high diversity of bacterial communities. These incubation conditions also promote the increase of richness in bacterial communities. Our results provide direct evidence of the mechanisms by which deep AOM processes can affect carbon cycling in the deep biosphere and global methane biochemistry.  相似文献   

5.
We examined sediments collected at Ocean Drilling Program (ODP) Leg 201 Site 1229 on the Peru Margin for microbial populations throughout the sediment column. Heterotrophic cultivation from these sediments yielded numerous colonies from various depths, including 49 bacterial isolates. At ODP Site 1229, there are significant interfaces of sulfate and methane, across which microbial cell numbers increase substantially. At these sulfate/methane transition zones (SMTZs), however, we observed a decrease in the success rate for the cultivation of bacterial colonies. Utilizing both direct plating and enrichment in different media, we cultivated isolates from the upper SMTZ around 30 m below seafloor (mbsf); however, similar attempts yielded no colonies from within the lower zone at 85 mbsf. The phylogenetic relationships of the 16S rRNA gene sequences for the isolates were determined and most were related to other organisms and sequences previously found in the subsurface belonging to the γ‐Proteobacteria, cytophagaflavobacteriumbacteroides, high G + C Gram‐positives, and Firmicutes groups. The most diverse group of isolates from Site 1229 was found between the SMTZs at 50 mbsf. ODP Leg 201 Site 1228 was examined for comparison and yielded an additional 18 isolates from 16 to 179 mbsf that were similar to those found at Site 1229. Direct plating at Site 1228 also showed decreased colony formation in the area of sulfate/methane transition. Our results suggest that heterotrophic bacterial populations are affected by SMTZs in deeply buried sediment.  相似文献   

6.
The significance of the various carbon cycling pathways in driving the sharp sulfate methane transition zone (SMTZ) observed at many locations along continental margins is still a topic of debate. Unraveling these processes is important to our understanding of the carbon cycle in general and to evaluate whether the location of this front can be used to infer present and past methane fluxes from deep reservoirs (e.g., gas hydrate). Here we report the pore water data from the second Ulleung Basin Gas Hydrate Expedition and on the results of a box model that balances solute fluxes among different carbon pools and satisfies the observed isotopic signatures. Our analysis identifies a secondary methanogenesis pathway within the SMTZ, whereby 25–35 % of the dissolved inorganic carbon (DIC) produced by the anaerobic oxidation of methane (AOM) is consumed by CO2 reduction (CR). To balance this DIC consumption, a comparable rate of organic matter degradation becomes necessary, which in turn consumes a significant amount of sulfate. The fraction of sulfate consumed by AOM ranges from 70 to 90 %. Whereas a simple mass balance would suggest a one to one relationship between sulfate and methane fluxes; our isotopic considerations show that methane flux estimates based solely on sulfate data may be in error by as much as 30 %. Furthermore, the carbon cycling within the SMTZ is fueled by a significant contribution (10–40 %) of methane produced by CR just below the SMTZ. Therefore sulfate gradient cannot necessarily be used to infer methane contributions from gas hydrate reservoirs that may lay tens to hundreds of meters below the SMTZ.  相似文献   

7.
Sulfate‐reducing methanotrophy by anaerobic methanotrophic archaea (ANME) and sulfate‐reducing bacteria (SRB) is a major biological sink of methane in anoxic methane‐enriched marine sediments. The physiology of a microbial community dominated by free‐living ANME‐1 at 14–16 cm below the seafloor in the G11 pockmark at Nyegga was investigated by integrated metagenomic and metaproteomic approaches. Total DNA was subjected to 454‐pyrosequencing (829 527 reads), and 16.6 Mbp of sequence information was assembled into 27352 contigs. Taxonomic analysis supported a high abundance of Euryarchaea (70%) with 66% of the assembled metagenome belonging to ANME‐1. Extracted sediment proteins were separated in two dimensions and subjected to mass spectrometry (LTQ‐Orbitrap XL). Of 356 identified proteins, 245 were expressed by ANME‐1. These included proteins for cold‐adaptation and production of gas vesicles, reflecting both the adaptation of the ANME‐1 community to a permanently cold environment and its potential for positioning in specific sediment depths respectively. In addition, key metabolic enzymes including the enzymes in the reverse methanogenesis pathway (except N5,N10‐methylene‐tetrahydromethanopterin reductase), heterodisulfide reductases and the F420H2:quinone oxidoreductase (Fqo) complex were identified. A complete dissimilatory sulfate reduction pathway was expressed by sulfate‐reducing Deltaproteobacteria. Interestingly, an APS‐reductase comprising Gram‐positive SRB and related sequences were identified in the proteome. Overall, the results demonstrated that our approach was effective in assessing in situ metabolic processes in cold seep sediments.  相似文献   

8.
We have previously identified a sulfate methane transition zone (SMTZ) within the methane hydrate-bearing sediment in the Ulleung Basin, East Sea of Korea, and the presence of ANME-1b group in the sediment has been shown by phylogenetic analysis of a 16S rRNA gene. Herein, we describe taxonomic and functional profiling in the SMTZ sample by metagenomic analysis, comparing with that of surface sediment. Metagenomic sequences of 115 Mbp and 252 Mbp were obtained from SMTZ and surface sediments, respectively. The taxonomic profiling using BLASTX against the SEED within MG-RAST showed the prevalence of methanogens (19.1%), such as Methanosarcinales (12.0%) and Methanomicrobiales (4.1%) predominated within the SMTZ metagenome. A number of 185,200 SMTZ reads (38.9%) and 438,484 surface reads (62.5%) were assigned to functional categories, and methanogenesis-related reads were statistically significantly overrepresented in the SMTZ metagenome. However, the mapping analysis of metagenome reads to the reference genomes, most of the sequences of the SMTZ metagenome were mapped to ANME-1 draft genomes, rather than those of methanogens. Furthermore, the two copies of the methyl-coenzyme M reductase gene (mcrA) segments of the SMTZ metagenome were clustered with ANME-1b in the phylogenetic cluster. These results indicate that ANME-1b reads were miss-annotated to methanogens due to limitation of database. Many of key genes necessary for reverse methanogenesis were present in the SMTZ metagenome, except for N5,N10-methenyl-H4MPT reductase (mer) and CoB-CoM heterodisulfide reductase subunits D and E (hdrDE). These data suggest that the ANME-1b represents the primary player the anaerobic methane oxidation in the SMTZ, of the methane hydrate-bearing sediment at the Ulleung Basin, East Sea of Korea.  相似文献   

9.
Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.  相似文献   

10.
The continental shelf and slope in the northern South China Sea is well known for its prospect of oil/gas/gas-hydrate resources. To study microbial communities and their roles in carbon cycling, a 4.9-m sediment core was collected from the Qiongdongnan Basin on the continental slope of the South China Sea during our cruise HY4-2005-5 in 2005. Geochemical, mineralogical, and molecular phylogenetic analyses were carried out. Sulfate concentration in pore water decreased with depth. Abundant authigenic carbonates and pyrite were observed in the sediments. The bacterial community was dominated by aerobic and facultative organisms. Bacterial clone sequences belonged to the Gamma-, Alpha-, Deltaproteobacteria and Firmicutes group, and they were related to Fe(III) and/or Mn(IV) reducers, sulfate reducers, aromatic hydrocarbon degraders, thiosulfate/sulfite oxidizers, and denitrifiers. Archaeal clone sequences exhibited greater overall diversity than the bacterial clones with most sequences related to Deep-Sea Archaeal Group (DSAG), Miscellaneous Crenarchaeotic Group (MCG), and Uncultured Euryarchaeotic Clusters (UECs). Archaeal sequences related to Methanosarcinales, South African Gold Mine Euryarchaeotic Group (SAGMEG), Marine Benthic Group-D (MBG-D) were also present. Most of these groups are commonly present in deep-sea sediments, particularly in methane/organic-rich or putative methane hydrate-bearing sediments.  相似文献   

11.
12.
The anoxic sediments of the White Oak River estuary comprise a distinctive sulfate–methane transition zone (SMTZ) and natural enrichment of the archaea affiliated with the Miscellaneous Crenarchaeotal Group (MCG). Archaeal biphytanes were generally depleted in 13C, with δ13C values being less than –35‰, indicative of production by active sedimentary archaeal populations. Multivariate analysis of the downcore distributions of 63 lipid biomarkers identified three major groups of lipids that were enriched in the surface, SMTZ or subsurface depths. Intact polar lipids with phosphatidylglycerol headgroups and glycerol dibiphytanyl glycerol tetraethers containing one, two or three cyclopentane rings were enriched at the base of the SMTZ and likely represent the accumulated product of a small but active ANME‐1 community. The recently identified butanetriol dibiphytanyl glycerol tetraethers (BDGT), which increased relatively to other lipids with depth, were correlated with the relative abundance of MCG in archaeal 16S rRNA clone libraries, and were 13C depleted throughout the depth profile, suggesting BDGT lipids as putative biomarkers of an MCG community that may either be autotrophic or feeding on 13C‐depleted organic substrates transported by porewater.  相似文献   

13.
Abstract

Ammonia-oxidizing bacteria (AOB) and aerobic methane oxidizing-bacteria (MOB) were studied in three extreme soils of the former Lake Texcoco, Mexico, with pH ranging from 8.5 to 10.5 and electrolytic conductivity (EC) from 0.67 to 84.76 dS m?1, and in two arable soils. Soil DNA was extracted with three different methods and total DNA was used as a template to amplify the pmoA and amoA functional genes and subsequently sequenced by pyrosequencing. The amoA gene sequences clustered as uncultured AOB dominated in the Texcoco soils, while Nitrosospira was dominant in the arable soils. Sequences of MOB associated with Nitrosococcus-rel (Type I) dominated (>85%) in the Texcoco soils, but they were more diverse in the arable soils, for example, JR2, JR3, Methylocaldum USC-g (Type I), USC-a (Type II) and gp23 (pxmA). Aerobic methane oxidizing-bacteria and AOB microbial diversity were significantly related to EC and pH (p?<?0.05). As such, the lower MOB and AOB microbial diversity in the Texcoco soil compared to the arable soil was determined by its higher EC and pH.  相似文献   

14.
Anaerobic methanotrophic archaea (ANME) consume methane in marine sediments, limiting its release to the water column, but their responses to changes in methane and sulfate supplies remain poorly constrained. To address how methane exposure may affect microbial communities and methane- and sulfur-cycling gene abundances in Arctic marine sediments, we collected sediments from offshore Svalbard that represent geochemical horizons where anaerobic methanotrophy is expected to be active, previously active, and long-inactive based on reaction-transport biogeochemical modelling of porewater sulfate profiles. Sediment slurries were incubated at in situ temperature and pressure with different added methane concentrations. Sediments from an active area of seepage began to reduce sulfate in a methane-dependent manner within months, preceding increased relative abundances of anaerobic methanotrophs ANME-1 within communities. In previously active and long-inactive sediments, sulfur-cycling Deltaproteobacteria became more dominant after 30 days, though these communities showed no evidence of methanotrophy after nearly 8 months of enrichment. Overall, enrichment conditions, but not methane, broadly altered microbial community structure across different enrichment times and sediment types. These results suggest that active ANME populations may require years to develop, and consequently microbial community composition may affect methanotrophic responses to potential large-scale seafloor methane releases in ways that provide insight for future modelling studies.  相似文献   

15.
The anoxic layers of marine sediments are dominated by sulfate reduction and methanogenesis as the main terminal oxidation processes. The aim of this study was to analyze the vertical succession of microbial populations involved in these processes along the first 4.5 m of a tidal-flat sediment. Therefore, a quantitative PCR approach was applied using primers targeting the domains of Bacteria and Archaea, and key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). The sampling site was characterized by an unusual sulfate peak at 250 cm depth resulting in separate sulfate-methane transition zones. Methane and sulfate profiles were diametrically opposed, with a methane maximum in the sulfate-depleted zone showing high numbers of archaea and methanogens. The methane-sulfate interfaces harbored elevated numbers of sulfate reducers, and revealed a slight increase in mcrA and archaeal 16S rRNA genes, suggesting sulfate-dependent anaerobic oxidation of methane. A diversity analysis of both functional genes by PCR-denaturing gradient gel electrophoresis revealed a vertical succession of subpopulations that were governed by geochemical and sedimentologic conditions. Along the upper 200 cm, sulfate-reducing populations appeared quite uniform and were dominated by the Deltaproteobacteria. In the layers beneath, an apparent increase in diversity and a shift to the Firmicutes as the predominant group was observed.  相似文献   

16.
There is a concern of whether the structure and diversity of a microbial community can be effectively revealed by short-length pyrosequencing reads. In this study, we performed a microbial community analysis on a sample from a high-efficiency denitrifying quinoline-degrading bioreactor and compared the results generated by pyrosequencing with those generated by clone library technology. By both technologies, 16S rRNA gene analysis indicated that the bacteria in the sample were closely related to, for example, Proteobacteria, Actinobacteria, and Bacteroidetes. The sequences belonging to Rhodococcus were the most predominant, and Pseudomonas, Sphingomonas, Acidovorax, and Zoogloea were also abundant. Both methods revealed a similar overall bacterial community structure. However, the 622 pyrosequencing reads of the hypervariable V3 region of the 16S rRNA gene revealed much higher bacterial diversity than the 130 sequences from the full-length 16S rRNA gene clone library. The 92 operational taxonomic unit (OTUs) detected using pyrosequencing belonged to 45 families, whereas the 37 OTUs found in the clone library belonged to 25 families. Most sequences obtained from the clone library had equivalents in the pyrosequencing reads. However, 64 OTUs detected by pyrosequencing were not represented in the clone library. Our results demonstrate that pyrosequencing of the V3 region of the 16S rRNA gene is not only a powerful tool for discovering low-abundance bacterial populations but is also reliable for dissecting the bacterial community structure in a wastewater environment.  相似文献   

17.
At two stations surveyed in Nitinat Lake, a ~200‐m‐deep anoxic tidal fjord, sulfide was detected as close as 15 m from the surface. Biological characterization, determined from small subunit ribosomal RNA gene sequencing, of the chemocline and anaerobic zone revealed many sequences related to sulfur‐oxidizing bacteria, suggesting that sulfur cycling is a dominant process. γ‐ and ε‐Proteobacteria related to thiotrophic symbionts, as well as Chlorobium sp., dominated the transition zone. These are expected to play a role in dark and phototrophic CO2 fixation, respectively. ε‐Proteobacteria phylotype abundance increased with depth, eventually comprising 69–97% of all sequences recovered from the anoxic zone. The vast majority (74%) of these phylotypes were affiliated with a novel Acrobacter sp. group (NITEP5). Quantification of NITEP5 revealed that up to 2.8 × 105 cells ml?1 were present in the anoxic zone. Surprisingly, although sequences related to known sulfate‐reducing bacteria were recovered from the transition zone, quantification of the dsr gene and 35SO42? uptake tests suggest that sulfate‐reduction within the water column is negligible. Overall, sequence diversity between different vertical zones was high, although the spatial segregation of γ‐Proteobacteria, Chlorobi, and ε‐Proteobacteria did not appear to vary significantly between seasons.  相似文献   

18.
In many marine surface sediments, the reduction of manganese (Mn) and iron (Fe) oxides is obscured by sulfate reduction, which is regarded as the predominant anaerobic microbial respiration process. However, many dissimilatory sulfate and sulfur reducing microorganisms are known to utilize alternative electron acceptors such as metal oxides. In this study, we tested whether sulfate and sulfur reducing bacteria are linked to metal oxide reduction based on biogeochemical modeling of porewater concentration profiles of Mn2+ and Fe2+ in Bothnian Bay (BB) and Skagerrak (SK) sediments. Steady-state modeling of Fe2+ and Mn2+ porewater profiles revealed zones of net Fe (0–9 cm BB; ~10 and 20 cm SK) and Mn (0–5 cm BB; 2–8 cm SK) species transformations. 16S rRNA pyrosequencing analysis of the in-situ community showed that Desulfobacteraceae, Desulfuromonadaceae and Desulfobulbaceae were present in the zone of Fe-reduction of both sediments. Rhodobacteraceae were also detected at high relative abundance in both sediments. BB sediments appeared to harbor a greater diversity of potential Fe-reducers compared to SK. Additionally, when the upper 10 cm of sediment from the SK was incubated with lepidocrocite and acetate, Desulfuromonas was the dominant bacteria. Real-time quantitative polymerase chain reaction (qPCR) results showed decreasing dsrA gene copy numbers with depth coincided with decreased Fe-reduction activity. Our results support the idea that sulfur and sulfate reducing bacteria contribute to Fe-reduction in the upper centimeters of both sediments.  相似文献   

19.
Gas hydrates harbour gigatons of natural gas, yet their microbiomes remain understudied. We bioprospected 16S rRNA amplicons, metagenomes, and metaproteomes from methane hydrate-bearing sediments under Hydrate Ridge (offshore Oregon, USA, ODP Site 1244, 2–69 mbsf) for novel microbial metabolic and biosynthetic potential. Atribacteria sequences generally increased in relative sequence abundance with increasing sediment depth. Most Atribacteria ASVs belonged to JS-1-Genus 1 and clustered with other sequences from gas hydrate-bearing sediments. We recovered 21 metagenome-assembled genomic bins spanning three geochemical zones in the sediment core: the sulfate–methane transition zone, the metal (iron/manganese) reduction zone, and the gas hydrate stability zone. We found evidence for bacterial fermentation as a source of acetate for aceticlastic methanogenesis and as a driver of iron reduction in the metal reduction zone. In multiple zones, we identified a Ni-Fe hydrogenase-Na+/H+ antiporter supercomplex (Hun) in Atribacteria and Firmicutes bins and in other deep subsurface bacteria and cultured hyperthermophiles from the Thermotogae phylum. Atribacteria expressed tripartite ATP-independent transporters downstream from a novel regulator (AtiR). Atribacteria also possessed adaptations to survive extreme conditions (e.g. high salt brines, high pressure and cold temperatures) including the ability to synthesize the osmolyte di-myo-inositol-phosphate as well as expression of K+-stimulated pyrophosphatase and capsule proteins.  相似文献   

20.
Microorganisms are known to play fundamental roles in the biogeochemical cycling of carbon in the coastal environments. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of archaea in a sediment core was reported based on the 16S rRNA and mcrA genes for the first time. Quantitative PCR analysis revealed that archaea were present at 106–107 16S rRNA gene copies/g (wet weight) in the sediment core, and the proportion of mcrA versus 16S rRNA gene copies varied from 11 to 45%. 16S rRNA gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), sulfate-methane transition zone (SMTZ, 32–42 cm), and bottom layer (44–50 cm) sediments. The results indicated that Miscellaneous Crenarchaeotal Group (MCG) was the main component in the sediments. The MCG archaea could be further divided into six subgroups: MCG-A, B, C, D, E, and F. On the other hand, mcrA sequences from methanogens related to the order Methanomicrobiales and ANME-2 methanotrophs were detected in all sediment layers. Taken together, our data revealed a largely unknown archaeal community in which MCG dominated within the Pearl River estuarine sediments, while methanogens and methane-oxidizing archaea putatively involving in methane metabolism, were also found in the community. This is the first important step towards elucidating the biogeochemical roles of these archaea in the Pearl River Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号