首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research investigated the potential role of siderophores in aerobic microbial Fe acquisition from natural organic matter (NOM; XAD-8 isolate and reverse osmosis concentrate pre- and post-Chelex® treatment) through the use of a siderophore-producing Pseudomonas mendocina wild type (WT) bacterium and an engineered mutant (Mt) that was incapable of siderophore production. NOM had complex effects on microbial growth under Fe-limited conditions as measured by optical density, most likely because of the presence of other toxic (trace) metals such as Al, NOM binding interference with additional trace metal nutrients, and/or biofilm development. However, a bioassay for cellular Fe status showed that both WT and Mt readily acquired Fe naturally associated with NOM. Thus, while siderophores may be useful for Fe acquisition from NOM by P. mendocina, they do not appear to be essential for this process.  相似文献   

2.
The fates of genetically modified (GM)Escherichia coli andPseudomonas putida in the corn rhizosphere were investigated. Under hydrophonic and sterile conditions, both bacteria grew well in the presence of root exudates used as a sole carbon source. The growth patterns of wild types and genetically modified strains ofE. coli andP. putida were similar under the conditions tested.The presence of rhizospheric microorganisms affected the survival pattern ofE. coli. In the presence of corn roots and rhizospheric microorganisms,E. coli numbers increased during the first 3 days but were later drastically reduced, probably as a result of competition with rhizospheric microorganisms for the carbon source. However, in the presence of rhizospheric microorganisms,P. putida survived better thanE. coli in the simulated corn rhizosphere.  相似文献   

3.
In aerobic environments microorganisms are faced with a discrepancy of ~10 orders of magnitude between the available Fe (~10-17M) and their metabolic requirement for it (~10-7M). In contrast to facultative anaerobic environments, where dissimilatory iron-reducing bacteria (DIRB) are often abundant, few studies have detailed microbial interactions with Fe(III) (hydr)oxides in aerobic environments. To better understand acquisition of Fe from Fe(III) (hydr)oxides, we investigated the production of siderophore and Fe(III) reduction by a strict aerobe in the presence of synthetic hematite as a source of Fe. Pseudomonas mendocina grew best when Fewas supplied as FeEDTA (~1.8x108 colony-forming units [CFU] ml-1), grew abundantly when Fe was supplied as hematite (~1.2x108 CFU ml-1), and grew poorly when Fe was withheld from the medium (~5.5x107 CFU ml-1). As expected, negligible siderophore was produced per cell when Fe was supplied as FeEDTA and more siderophore was produced in the hematite flasks than in the controls. Thus, growth of P. mendocina and the production of siderophore in the presence of hematite present compelling evidence that siderophore was produced as a mechanism to acquire Fe from hematite. For the Fe reduction experiments, Fe reduction by components of the supernatant fluid was induced weakly when Fe was supplied as hematite or as FeEDTA, but much more when the cells were cultured under extreme Fe deprivation. In fact, 16 times as much Fe reduction occurred in the controls as in the presence of either of the FeEDTA or hematite amendments. Our results, which contravene the long-held assumptions that Fe acquisition was facilitated solely by siderophores, provides a new perspective regarding microbial interactions with Fe bearing minerals.  相似文献   

4.
Although iron (Fe) is an essential element for almost all living organisms, little is known regarding its acquisition from the insoluble Fe(III) (hydr)oxides in aerobic environments. In this study a strict aerobe, Pseudomonas mendocina, was grown in batch culture with hematite, goethite, or ferrihydrite as a source of Fe. P. mendocina obtained Fe from these minerals in the following order: goethite > hematite > ferrihydrite. Furthermore, Fe release from each of the minerals appears to have occurred in excess, as evidenced by the growth of P. mendocina in the medium above that of the insoluble Fe(III) (hydr)oxide aggregates, and this release was independent of the mineral's surface area. These results demonstrate that an aerobic microorganism was able to obtain Fe for growth from several insoluble Fe minerals and did so with various growth rates.  相似文献   

5.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.  相似文献   

6.
This research focused on whether bacteria living in aerobic environments where Fe is often a limiting nutrient could access Fe associated with the clay mineral kaolinite. Kaolinite is one of the most abundant clays at the Earth's surface, and it often contains trace quantities of Fe as surface precipitates, accessory minerals, and structural substitutions. We hypothesized that aerobic bacteria may enhance kaolinite dissolution as a means of obtaining associated Fe. To test this hypothesis, we conducted microbial growth experiments in the presence of an aerobic Pseudomonas mendocina  相似文献   

7.
The use of peptide mass fingerprinting with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was demonstrated to identify and phenotypically characterize toluene-degrading bacteria via biomarkers of degradation and taxonomical classification. Pseudomonas putida F1, P. mendocina KR1, and Burkholderia sp. JS150 were grown on toluene, extracted, electrophoretically separated, and analyzed by MALDI-TOF MS. Catabolic enzymes were identified and results substantiated using tandem MS.  相似文献   

8.
Many microorganisms produce and excrete acetoin (3-hydroxy-2-butanone) when growing in environments that contain glucose or other fermentable carbon sources. This excreted compound can then be assimilated by other bacterial species such as pseudomonads. This work shows that acetoin is not a preferred carbon source of Pseudomonas putida, and that the induction of genes required for its assimilation is down-modulated by different, independent, global regulatory systems when succinate, glucose or components of the LB medium are also present. The expression of the acetoin degradation genes was found to rely on the RpoN alternative sigma factor and to be modulated by the Crc/Hfq, Cyo and PTSNtr regulatory elements, with the impact of the latter three varying according to the carbon source present in addition to acetoin. Pyruvate, a poor carbon source for P. putida, did not repress acetoin assimilation. Indeed, the presence of acetoin significantly improved growth on pyruvate, revealing these compounds to have a synergistic effect. This would provide a clear competitive advantage to P. putida when growing in environments in which all the preferred carbon sources have been depleted and pyruvate and acetoin remain as leftovers from the fermentation of sugars by other microorganisms.  相似文献   

9.
 To examine the trichloroethylene (C2HCl3)-degrading capability of five microorganisms, the maximum rate, extent, and degree of C2HCl3 mineralization were evaluated for Pseudomonas cepacia G4, Pseudomonas cepacia G4 PR1, Pseudomonas mendocina KR1, Pseudomonas putida F1, and Methylosinus trichosporium OB3b using growth conditions commonly reported in the literature for expression of oxygenases responsible for C2HCl3 degradation. By varying the C2HCl3 concentration from 5 μM to 75 μM, V max and K m values for C2HCl3 degradation were calculated as 9 nmol/(min mg protein) and 4 μM for P. cepacia G4, 18 nmol/(min mg protein) and 29 μM for P. cepacia G4 PR1, 20 nmol/(min mg protein) and 10 μM for P. mendocina KR1, and 8 nmol/(min mg protein) and 5 μM for P. putida F1. This is the first report of these Michaelis-Menten parameters for P. mendocina KR1, P. putida F1, and P. cepacia G4 PR1. At 75 μM, the extent of C2HCl3 that was degraded after 6 h of incubation with resting cells was 61%–98%; the highest degradation being achieved by toluene-induced P. mendocina KR1. The extent of C2HCl3 mineralization in 6 h (as indicated by concentration of chloride ion) was also measured and varied from 36% for toluene-induced P. putida F1 to 102% for M. trichosporium OB3b. Since C2HCl3 degradation requires new bio-mass, the specific growth rate (μmax) of each of the C2HCl3-degradation microorganisms was determined and varied from 0.080/h (M. trichosporium OB3b) to 0.864/h (P. cepacia G4 PR1). Received: 1 May 1995/Received revision: 11 July 1995/Accepted: 26 July 1995  相似文献   

10.
We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Pseudomonas mendocina KR1 in liquid and soil systems. P. putida DOT-T1 tolerated concentrations of heptane, propylbenzene, octanol, and toluene of at least 10% (vol/vol), while P. putida F1 and EEZ15 grew well in the presence of 1% (vol/vol) propylbenzene or 10% (vol/vol) heptane, but not in the presence of similar concentrations of octanol or toluene. P. mendocina KR1 grew only in the presence of heptane. All three P. putida strains were able to become established in a fluvisol soil from the Granada, Spain, area, whereas P. mendocina KR1 did not survive in this soil. The tolerance to organic solvents of all three P. putida strains was therefore assayed in soil. The addition to soil of 10% (vol/wt) heptane or 10% (vol/wt) propylbenzene did not affect the survival of the three P. putida strains. However, the addition of 10% (vol/wt) toluene led to an immediate decrease of several log units in the number of CFU per gram of soil for all of the strains, although P. putida F1 and DOT-T1 subsequently recovered. This recovery was influenced by the humidity of the soil and the incubation temperature. P. putida DOT-T1 recovered from the shock faster than P. putida F1; this allowed the former strain to become established at higher densities in polluted sites into which both strains had been introduced.  相似文献   

11.
Abstract

Mn oxides have long been considered the primary environmental oxidant of Cr(III), however, since most of the reactive Mn oxides in the environment are believed to be of biological origin, microorganisms may indirectly mediate Cr(III) oxidation and accelerate the rate over that seen in purely abiotic systems. In this study, we examined the ability of the Mn(II)-oxidizing bacterium, Pseudomonas putida strain GB-1, to oxidize Cr(III). Our results show that GB-1 cannot oxidize Cr(III) directly, but that in the presence of Mn(II), Cr(III) can be rapidly and completely oxidized. Growth studies suggest that in growth medium with few organics the resulting Cr(VI) may be less toxic to P. putida GB-1 than Cr(III), which is generally considered less hazardous. In addition, Cr(III) present during the growth of P. putida GB-1 appeared to cause iron stress as determined by the production of the fluorescent siderophore pyoverdine. When stressed by Fe limitation or Cr(III) toxicity, Mn(II) oxidation by GB-1 is inhibited.  相似文献   

12.
Creatinine deimination has been newly detected in the following various cytosine deaminase-forming microorganisms: Escherichia coli, Proteus mirabilis, Pseudomonas aureofaciens, Pseudomonas chlororaphis and Pseudomonas cruciviae. All these microorganisms, except for E. coli, formed cytosine deaminase in a constitutive or repressive way. P. putida 77 and E. coli showed highly increased formation of creatinine deiminase in the presence of creatinine and cytosine. Throughout serial DEAE-Sephacel and Sephacryl S-300 column chromatographies, the cytosine deaminases of these microorganisms, except for that of P. ovalis, were found to hydrolyze both creatinine and cytosine at comparable rates. No concrete evidence was obtained for the presence of any other protein that hydrolyzed creatine and/or cytosine than the cytosine deaminases in the three test microorganisms randomly selected for investigation.Different from P. putida 77, none of the test microorganisms degraded N-methylhydantoin; neither N-methylhydantoin amidohydrolase nor N-carbamoylsarcosine amidohydrolase was formed in the presence of creatinine in these microorganisms. As a result, the wide occurrence of cytosine deaminases in microorganisms was found to be related to the wide distribution of those microorganisms which hydrolyze creatinine to N-methylhydantoin without further degradation.  相似文献   

13.
Twenty-five aerobic phenol-degrading bacteria, isolated from different environmental samples on phenol agar after several subcultures in phenol broth, utilized phenol (0.2 g l−1) within 24 h, but removal of phenol was more rapid when other carbon sources were also present. A microtitre plate method was developed to determine growth rate, biofilm formation and respiratory activity of the strains isolated. Pseudomonas putida strains C5 and D6 showed maximum growth (as O.D. at 600 nm), P. putida D6 and unidentified bacterial strain M1 were more stable at high concentrations of phenol (0.8 g l−1), and P. putida C5 formed the greatest amount of biofilm in 0.5 g phenol l−1 medium. Measurement of dehydrogenase activity as reduction of triphenyl tetrazolium chloride supported data on growth rate and biofilm formation. The microtitre plate method provided a selective method for detection of the best phenol degrading and biofilm-forming microorganisms, and was also a rapid, convenient means of studying the effect of phenol concentration on growth rate and biofilm formation.  相似文献   

14.
Three phosphate solubilizing bacterial isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 were assessed for mutual relationships among them, competitiveness with soil microorganisms and associations with plant root using luxAB reporter genes for follow-up studies. Synergism between either P. agglomerans or M. laevaniformans, as acid-producing bacteria, and P. putida, as a strong phosphatase producer, was consistently observed both in liquid culture medium and in root rhizosphere. All laboratory, greenhouse and field experiments proved that these three isolates compete well with naturally occurring soil microorganisms. Consistently, the combinations of either P. agglomerans or M. laevaniformans strains with Pseudomonas putida led to higher biomass and potato tuber in greenhouse and in field trials. It is conceivable that combinations of an acid- and a phosphatase-producing bacterium would allow simultaneous utilization of both inorganic and organic phosphorus compounds preserving the soil structure.  相似文献   

15.
Most biofilm studies employ single species, yet in nature biofilms exist as mixed cultures, with inevitable effects on growth and development of each species present. To investigate how related species of bacteria interact in biofilms, two Pseudomonas spp., Pseudomonas fluorescens and Pseudomonas putida, were cultured in capillary bioreactors and their growth measured by confocal microscopy and cell counting. When inoculated in pure culture, both bacteria formed healthy biofilms within 72?h with uniform coverage of the surface. However, when the bioreactors were inoculated with both bacteria simultaneously, P. putida was completely dominant after 48?h. Even when the inoculation by P. putida was delayed for 24?h, P. fluorescens was eliminated from the capillary within 48?h. It is proposed that production of the lipopeptide putisolvin by P. putida is the likely reason for the reduction of P. fluorescens. Putisolvin biosynthesis in the dual-species biofilm was confirmed by mass spectrometry.  相似文献   

16.
In the present investigation, an attempt has been made to isolate and identify SDS-degrading bacteria from different detergent contaminated ponds situated in Varanasi city, UP, India. Initial survey of ponds indicated that these ponds were contaminated with detergents. Employing enrichment technique in minimal medium (PBM) with SDS as a sole carbon source, a total of 24 isolates were recovered from 7 detergent contaminated ponds. Studies on rates of SDS degradation indicated that the rate of SDS degradation varied from 97.2% to 19.6% after 12h incubation under identical conditions. An estimation of alkyl sulfatase activity indicated that the activity varied from 0.168 ± 0.004 to 0.024 ± 0.005 μmol SDS/mg protein/min. Molecular characterization of these isolates was performed on the basis of ARDRA and ERIC PCR, which indicated that these isolates were broadly divided in 8 groups. Some selected isolates were identified on the basis of 16S rDNA sequencing. It was found that these isolates belonged to Pseudomonas aeruginosa, Pseudomonas mendocina, Pseudomonas stutzeri, Pseudomonas alcaligenes, Pseudomonas pseudoalcaligenes, Pseudomonas putida and Pseudomonas otitidis respectively. Among these isolates P. aeruginosa, P. putida and P. otitidis have been previously shown to degrade and metabolize SDS, the rest of the isolates appear to be new.  相似文献   

17.

Background  

We have recently found that Pseudomonas putida deficient in ColRS two-component system is sensitive to phenol and displays a serious defect on solid glucose medium where subpopulation of bacteria lyses. The latter phenotype is significantly enhanced by the presence of phenol in growth medium. Here, we focused on identification of factors affecting phenol tolerance of the colR-deficient P. putida.  相似文献   

18.
The survival of genetically engineered and wild-type Pseudomonas putida PpY101, that contained a recombinant plasmid pSR134 conferring mercury resistance, were monitored in andosol and sand microcosms. The survival of genetically engineered and wild-type P. putida was not significantly different in andosol. The population change of the two strains was dissimilar in andosol and sand. The survival of genetically engineered and wild-type P. putida strains was affected by the water content of andosol, and increased with the increment of the water content. The impact of the addition of genetically engineered and wild-type P. putida strains on indigenous bacteria and fungi was examined. Inoculation of both strains had no apparent effect on the density of indigenous microorganisms.  相似文献   

19.
Production of theobromine from caffeine by caffeine-degrading bacteria was studied. We found that addition of metal ions such as Zn2+ to intact cells of a caffeine-degrading isolate from soil, Pseudomonas sp. No.6, resulted in a high theobromine accumulation from caffeine. We hypothesized that Zn2+ acts as a selective inhibitor of one of the theobromine-demethylating enzymes and further screened for theobromine-producing activities in the presence of Zn2+ among a number of caffeine-using microorganisms. A strain identified taxonomically as Pseudomonas putida No. 352 showed the best productivity among 973 microorganisms of stock cultures and soil isolates. Culture conditions for the production of theobromine from caffeine by P. putida No. 352 were studied. Under optimal conditions, nearly 20 g/liter of theobromine was produced from caffeine in a yield of 92%.  相似文献   

20.
The applicability of transgenic plants and plant growth-promoting bacteria to improve plant biomass accumulation as a phytoremediation strategy at a nickel (Ni)-contaminated field site was examined. Two crops of 4-day old non-transformed and transgenic canola (Brassica napus) seedlings in the presence and absence of Pseudomonas putida strain UW4 (crop #1) or P. putida strain HS-2 (crop #1 and 2) were transplanted at a Ni-contaminated field site in 2005. Overall, transgenic canola had increased growth but decreased shoot Ni concentrations compared to non-transformed canola, resulting in similar total Ni per plant. Under optimal growth conditions (crop #2), the addition of P. putida HS-2 significantly enhanced growth for non-transformed canola. Canola with P. putida HS-2 had trends of higher total Ni per plant than canola without P. putida HS-2, indicating the potential usefulness of this bacterium in phytoremediation strategies. Modifications to the planting methods may be required to increase plant Ni uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号