首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Cave lithifying systems are excellent models to study biomineralization in the dark. The Chimalacatepec Lava Tube System in Mexico harbors diverse biospeleothems where previous studies suggest that the formation of opaline terrestrial stromatolites is related to microorganisms in contiguous mats. However, there is no information regarding their characterization and their role in mineral formation. In this study, we characterized the bacterial and archaeal composition of microbial mats and stromatolites and suggested the main processes involved in the genesis of opaline stromatolites. Our results showed that the microbial mats and stromatolites have a similar 16S rRNA gene composition, but stromatolites contain more Actinobacteria, which have been previously found in other lava tubes together with other key bacteria. Microorganisms found here belonged to groups with the potential to fix carbon and degrade organic matter. We propose that the synergic interaction of autotrophic and heterotrophic microorganisms that thrive in the dark might be inducing carbonate precipitation within the Ca-enriched extracellular polymeric substances (EPS), generating opal-A and calcite laminae. The similar 16S rRNA gene fingerprint and the presence of potential pathways that induce carbonate precipitation in opaline stromatolites and microbial mats suggest that microbial mats lithify and contribute to the stromatolite biotic genesis.  相似文献   

2.
The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met.  相似文献   

3.
In the present study, laboratory precipitation experiments using similar water chemistry and two different bacterial cultures from Lake Ac?göl sediments, a hypersaline lake in Turkey, were performed to reproduce mineral assemblages similar to those found in the lake. Two different bacterial cultures induce various calcium/magnesium carbonates precipitation under all the experimental conditions (solid vs. liquid): Hydromagnesite, dypingite, huntite, monohydrocalcite, and aragonite. The geochemical program PHREEQC was used to calculate the mineral saturation indexes in the cultures and in lake water. Carbonate mineral assemblages identified in the experiments seem to be independent of the type of microorganisms but rather controlled by the chemical composition and physical conditions of the media. The relative amounts of monohydrocalcite, hydromagnesite, and dypingite are controlled by varying sulfate concentration from 0 to 56 mM. This demonstrates a kinetic effect that could similarly affect the mineral assemblage in the lake. Also the spherical morphology of hydromagnesite points to growth of these minerals under partial inhibition in the brine under high concentrations of ions and organic polymers produced by the microbial communities. As reproduced by the culture experiments, the authigenic carbonate mineral assemblage of Lake Ac?göl most likely results from interplay of ionic composition of the brine and microbial effects.  相似文献   

4.
Mineralogy, microbial ecology, and mineral weathering in the subsurface are an intimately linked biogeochemical system. Although bacteria have been implicated indirectly in the accelerated weathering of minerals, it is not clear if this interaction is simply the coincidental result of microbial metabolism, or if it represents a specific strategy offering the colonizing bacteria a competitive ecological advantage. Our studies provide evidence that silicate weathering by bacteria is sometimes driven by the nutrient requirements of the microbial consortium, and therefore depends on the trace nutrient content of each aquifer mineral. This occurrence was observed in reducing groundwaters where carbon is abundant but phosphate is scarce; here, even resistant feldspars are weathered rapidly. This suggests that the progression of mineral weathering may be influenced by a mineral's nutritional potential, with microorganisms destroying only beneficial minerals. The rock record, therefore, may contain a remnant mineralogy that reflects early microbial destruction of biologically valuable minerals, leaving a residuum of "useless" minerals, where "value" depends on the organism, its metabolic needs, and the diagenetic environment. Conversely, the subsurface distribution of microorganisms may, in part, be controlled by the mineralogy and by the ability of an organism to take advantage of mineral-bound nutrients.  相似文献   

5.
Microtextures of titanite (CaTiSiO5) in exceptionally preserved Archean pillow lavas have been proposed as the earliest examples of microbial ichnofossils. An origin from microbial tunneling of seafloor volcanic glass that is subsequently chloritized and the tunnels infilled by titanite has been argued to record the activities of subseafloor microbes. We investigate the evidence in pillow lavas of the 3.35 Ga Euro Basalt from the Pilbara Craton, Western Australia, to evaluate the biogenicity of the microtextures. We employ a combination of light microscopy and chlorite mineral chemical analysis by EPMA (electron probe micro‐analysis) to document the environment of formation and analyze their ultrastructure using FIB‐TEM (focussed ion beam combined with transmission electron microscopy) to investigate their mode of growth. Petrographic study of the original and re‐collected material identified an expanded range of titanite morphotypes along with early anatase growth forming chains and aggregates of coalesced crystallites in a sub‐greenschist facies assemblage. High‐sensitivity mapping of FIB lamellae cut across the microtextures confirm that they are discontinuous chains of coalesced crystallites that are highly variable in cross section and contain abundant chlorite inclusions, excluding an origin from the mineralization of previously hollow microtunnels. Comparison of chlorite mineral compositions to DSDP/IODP data reveals that the Euro Basalt chlorites are similar to recent seafloor chlorites. We advance an abiotic origin for the Euro Basalt microtextures formed by spontaneous nucleation and growth of titanite and/anatase during seafloor‐hydrothermal metamorphism. Our findings reveal that the Euro Basalt microtextures are not comparable to microbial ichnofossils from the recent oceanic crust, and we question the evidence for life in these Archean lavas. The metamorphic reactions that give rise to the growth of the Euro Basalt microtextures could be commonplace in Archean pillow lavas and need to be excluded when seeking traces of life in the subseafloor on the early Earth.  相似文献   

6.
A new vertebrate faunal assemblage was recently discovered from the uppermost part of the late Miocene Puerto Madryn Formation. These deposits crop out along the southwestern coast of the Península Valdés area near Punta Delgada (Chubut Province, Argentina). The exhumed vertebrate fauna includes a range of fish, bird and mammal taxa, of which the latter are most varied and abundant. The new findings represent the first record of continental fossil vertebrates in the Puerto Madryn Formation and this is the first assemblage of late Miocene continental vertebrates recorded to the south of Río Negro Province. It also includes the southernmost record of Hydrochoeridae rodents, Dendrocygninae birds and Loricariidae fishes. The mammals suggest that the fossil-bearing sediments are Huayquerian in age. The climate during the accumulation of late Miocene deposits in this region is inferred to have been warmer and seasonally drier than that of today.  相似文献   

7.
The Acinetobacter calcoaceticus strain TM-31 has been isolated from a microbial assemblage of a pilot plant purifying waste water polluted with mineral oil. This strain is capable of efficient degradation of components of mineral oil (alkanes, isoalkanes, and alkyl residues of the naphthene and arene fraction. The strain bears stably inherited plasmids of sizes 120, 9, and 8 kb, which can be transferred into plasmid-free cells of the parental strain and into bacteria of the genus Pseudomonas and ensure the degradation of hexadecane and mineral oil.  相似文献   

8.
Extensive microbial mats colonize sandy tidal flats that form along the coasts of today's Earth. The microbenthos (mainly cyanobacteria) respond to the prevailing physical sediment dynamics by biostabilization, baffling and trapping, as well as binding. This biotic-physical interaction gives rise to characteristic microbially induced sedimentary structures (MISS) that differ greatly from both purely physical structures and from stromatolites. Actualistic studies of the MISS on modern tidal flats have been shown to be the key for understanding equivalent fossil structures that occur in tidal and shelf sandstones of all Earth ages. However, until now the fossil record of Archean MISS has been poor, and relatively few specimens have been found. This paper describes a study location that displays a unique assemblage with a multitude of exceptionally preserved MISS in the 2.9-Ga-old Pongola Supergroup, South Africa. The 'Nhlazatse Section' includes structures such as 'erosional remnants and pockets', 'multidirected ripple marks', 'polygonal oscillation cracks', and 'gas domes'. Optical and geochemical analyses support the biogenicity of microscopic textures such as filamentous laminae or 'orientated grains'. Textures resembling filaments are lined by iron oxide and hydroxides, as well as clay minerals. They contain organic matter, whose isotope composition is consistent with carbon of biological origin. The ancient tidal flats of the Nhlazatse Section record four microbial mat facies that occur in modern tidal settings as well. We distinguish endobenthic and epibenthic microbial mats, including planar, tufted, and spongy subtypes. Each microbial mat facies is characterized by a distinct set of MISS, and relates to a typical tidal zone. The microbial mat structures are preserved in situ, and are consistent with similar features constructed today by benthic cyanobacteria. However, other mat-constructing microorganisms also could have formed the structures in the Archean tidal flats.  相似文献   

9.
1. How climate warming may interact with other pressures on aquatic ecosystems is an important issue for research and management. We combined lake monitoring data with a palaeolimnological study to explore the combined effects of eutrophication and subsequent oligotrophication with a long‐term temperature increase in epilimnetic waters. Our goals were (i) to evaluate how well sediment‐based reconstructions reflect the instrumental observations, (ii) to use the palaeo‐record to characterise a reference state for the lake and (iii) to explore whether data from the sediment record can aid in separating the effects of nutrient load and temperature in a large and deep lake. 2. Lake Mjøsa is a large and deep lake in south‐eastern Norway. Eutrophication symptoms peaked in the 1970s, which led to extensive measures to reduce the phosphorus load. A monitoring programme has run continuously from 1972. Monitoring has documented a marked decrease in phosphorus load and algal biomass and also revealed an increase in epilimnetic temperature and extended summer stratification. 3. Records of algal pigments and diatoms were extracted from sediment cores taken from 236 m depth. The pigment record documented dramatic changes in lake production consistent with the monitoring record. The diatom record reflected well the eutrophication history of the lake and also demonstrated that the assemblage of the recent recovery stage differs from that of the pre‐eutrophication period. 4. Ordination of diatom assemblages over time constrained by proxies for nutrient load and temperature indicated that the diatom assemblage correlated with both factors, which together accounted for 60% of the variation in diatom composition. No interaction was detected between these factors. The results suggest that the diatom assemblage has responded to varying nutrient loads as well as to changes in temperature and/or factors that correlate with temperature. 5. Reconstructions of algal biomass and total phosphorus content mirrored known changes through the monitoring period, although the absolute phosphorus estimates were too high relative to the instrumental record. The sediment record from Lake Mjøsa provides a baseline for lake production in terms of algal pigments and organic contents, and for the diatom assemblage composition in a pristine stage.  相似文献   

10.
河北阳原—蔚县晚上新世兔形类化石   总被引:14,自引:11,他引:3  
本文记述河北阳原——蔚县晚上新世小哺乳动物群中的兔形类化石共3属5种:Pliopent-alagus nihewanensis sp.nov.,Hypolagus sohreuderi,Ochotona cf.lagrelii,Ochotona minor和Ochotona erythrotis.。对首次发现于亚洲的Pliopentalagus进行了起源和演化方面的探讨;并就华北上新世一早更新世常见的Hypolagus作了一些评述。本文指出:Hypolagus—Plio-pentalagus组合已延至早维拉方期;Ochotona lagrelii—Ochotona minor则为已知的最晚代表。  相似文献   

11.
The Acinetobacter calcoaceticusstrain TM-31 has been isolated from a microbial assemblage of a pilot plant that purifies waste water polluted with mineral oil. This strain is capable of efficient degradation of components of mineral oil (alkanes, isoalkanes, and alkyl residues of the naphthene and arene fraction). The strain bears stably inherited plasmids of sizes 120, 9, and 8 kb, which can be transferred into plasmid-free cells of the parental strain and into bacteria of the genusPseudomonasand ensure the degradation of hexadecane and mineral oil.  相似文献   

12.
Drilling predation provides a rare opportunity to study and quantify prey-predator interactions in the fossil record. Records of drilling predation on scaphopod mollusc are rare. Here, we report naticid drilling predation on scaphopods from a “Turritelline-dominated assemblage” (TDA) stratigraphically just below the K-Pg boundary sections in Rajahmundry, India, which was situated in the Southern Hemisphere during that time. Low drilling frequency was found in the present assemblage based on 248 specimens, which was similar to most of the Cretaceous values previously reported. Majority of the specimens of previous studies were reported from higher latitudes in the Northern Hemisphere. Our report extended the palaeobiogeography of naticid predation on scaphopods into the Southern Hemisphere. Size and site stereotypy of drillholes on the scaphopod shell suggested that predatory behavior of naticids was already highly evolved, but evidence of escalation was less clear in scaphopod prey.  相似文献   

13.
We have collected live and dead foraminiferal times-series data at 2-weekly intervals for a 12-month period from the intertidal zone of Cowpen Marsh, Tees Estuary, UK. The data from the 689 samples show profound differences between live and dead assemblages, although assemblages are dominated by just three species, Haynesina germanica, Jadammina macrescens and Trochammina inflata, which represent over 70% of the assemblage. The cumulative increase in species of most environments approximates to a lognormal or log series. None of the datasets show a broken stick pattern. The cumulative maximum number of species, which represents the species carrying capacity of the environment, is recorded earlier in the life assemblages than the dead counterparts. The dead assemblage of Cowpen Marsh is found to have a higher abundance (435 compared to 163 individuals/10 cm3) and number of species (52 compared to 28) than its live counterpart because the dead assemblage represents many generations added over a long period of time. In contrast, some species are recorded in the live dataset that were not found in the dead assemblage, indicating the dead record is either incomplete (e.g. taphonomic change) or inadequately sampled.We investigated the influence of patterns in cumulative increase on dead assemblages for sea-level reconstructions through the development of foraminiferal-based transfer functions. The cumulative transfer functions suggest that the performance improves during the first six sample intervals of the time-series dataset with reconstruction differing by 1.2 m and remains constant thereafter.  相似文献   

14.
Caves are extreme and specialised habitats for terrestrial life that sometimes contain moonmilk, a fine-grained paste-like secondary mineral deposit that is found in subterranean systems worldwide. While previous studies have investigated the possible role of microorganisms in moonmilk precipitation, the microbial community ecology of moonmilk deposits is poorly understood. Bacterial and fungal community structure associated with four spatially isolated microcrystalline, acicular calcite moonmilk deposits at Ballynamintra Cave (S. Ireland) was investigated during this study. Statistical analyses revealed significant differences in microbial activity, number of bacterial species, bacterial richness and diversity, and fungal diversity (Shannon's diversity) among the moonmilk sites over an area of approximately 2.5 m2. However, the number of fungal species and fungal community richness were unaffected by sampling location. SIMPER analysis revealed significant differences in bacterial and fungal community composition among the sampling sites. These data suggest that a rich assemblage of microorganisms exists associated with moonmilk, with some spatial diversity, which may reflect small-scale spatial differences in cave biogeochemistry.  相似文献   

15.
Vertical profiles of microbial assemblages from samples of Mono Lake water collected in July 1994 and in April and July 1995 were obtained by analyzing DNA via the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal RNA (rRNA) genes. The microbial assemblage was vertically stratified and distributions of individual ribotypes were coherent with temperature, salinity, irradiance and dissolved oxygen distributions at the beginning of the study in July of 1994. The lake mixed completely during the winter of 1994–1995 and was beginning to stratify thermally by April 1995. Water column gradients were weak and oxygen was depleted at depth. The microbial assemblage was uniformly distributed throughout the water column except at 20 m, where one band dominated. The microbial assemblage was vertically stratified again by July 1995. Partial sequences (134–160 bp, except one of 83 bp) obtained from DGGE bands revealed affinities to known organisms, but only one potentially exact match was found. With a few exceptions, the same ribotypes were present on all sampling dates; there was no evidence for a marked seasonal succession in microbial community composition, despite the dramatic changes in limnological conditions that accompanied the winter overturn. A band that was ubiquitous in samples from the oxycline and hypolimnion in July of both years was found throughout the water column in April. This sequence could be attributed to the chloroplast rRNA gene of an unusual phytoplankter, the green alga Picocystis salinarum.  相似文献   

16.
Benthic microbial mats are common in the alkaline hydromagnesite-magnesite playa lakes of Interior British Columbia. Four main zones are recognized based on mat morphology that can be related to the type and duration of wetting. From the basin margin toward the playa centre they are: (i) vegetated hummocky ground; (ii) polygonal hummocky ground; (iii) low-domal and stratiform mats, and (iv) laterally continuous and pustular mats. Mats in peripheral mudflats are commonly mineralized by hydromagnesite, mostly precipitated by capillary evaporation of shallow groundwaters. Mats forming in the ephemeral lake tend to have lower carbonate content.Although widespread, the mats are poorly preserved in the Holocene sedimentary record. Underlying sediments are commonly weakly bedded, disturbed or massive. Desiccation, dehydration, wetting-drying cycles, and grazing by invertebrates cause fragmentation of mats at the surface, facilitating erosion. Cryogranulation, interstitial mineral precipitation, vesiculation, bioturbation, compaction, and volume changes associated with diagenesis, disrupt and destroy lamination in the upper few centimetres. Most surviving organic matter is lost by early microbial degradation.  相似文献   

17.
Seven benthic foraminiferal assemblages were identified in vibracores through Holocene lagoons of three Belize atoll lagoons (Glovers Reef, Lighthouse Reef, Turneffe Islands). These include (1) the low-diversity Cribroelphidium assemblage (2) the Cribroelphidium-Elphidium assemblage (3) the Quinqueloculina-Triloculina-Peneroplis assemblage (4) the high-diversity miliolid assemblage (5) the Archaias-miliolid assemblage (6) the low-diversity miliolid assemblage, and (7) the mixed assemblage. Altogether, 109 species and 56 genera were identified. The highest diversities are observed in the largest lagoon (Turneffe Islands), whereas one of the smaller lagoons (Glovers Reef) exhibits the lowest diversities during the Holocene. No significant changes in diversity over time occur, however, a slight trend to higher diversity may be observed through the Holocene, suggesting that the foraminiferal faunas in the atolls are in a diversification stage. Faunal diversity in atoll lagoons appears to be controlled largely by habitat size, habitat heterogeneity, and water circulation. Habitat age and water depth only play minor roles. Substrate texture, water depth, and turbidity influence the predominant modes of life of benthic foraminifera encountered in the lagoons (epifaunal versus infaunal versus symbiont-bearing). Time-averaging effects were not observed, even though lagoonal sedimentation rates fluctuate in individual cores and the three lagoons, and despite the fact that sediments are modified through bioturbation by callianassid shrimps. This finding underlines the potential of benthic foraminifera for paleoecological studies in the fossil record of reefs and carbonate platforms.  相似文献   

18.
Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession.  相似文献   

19.
Microbialites provide a record of the interaction of microorganisms with their environment constituting a record of microbial life and environments through geologic time. Our capacity to interpret this record is limited by an incomplete understanding of the microbial, geochemical, and physical processes that influence microbialite formation and morphogenesis. The modern system Laguna Negra in Catamarca Province, Argentina contains microbialites in a zone of carbonate precipitation associated with physico-chemical gradients and variable microbial community structure, making it an ideal location to study how these processes interact to drive microbialite formation. In this study, we investigated the geospatial relationships between carbonate morphology, geochemistry, and microbial community at the macro- (decimeter) to mega- (meter) scale by combining high-resolution imagery with field observations. We mapped the distribution of carbonate morphologies and allochtonously-derived volcaniclasts and correlated these with sedimentary matrices and geochemical parameters. Our work shows that the macroscale distribution of different carbonate morphologies spatially correlates with microbial mat distributions—a result consistent with previous microscale observations. Specifically, microbialitic carbonate morphologies more commonly occur associated with microbial mats while abiotically derived carbonate morphologies were less commonly associated with microbial mats. Spatial variability in the size and abundance of mineralized structures was also observed, however, the processes controlling this variability remains unclear and likely represent a combination of microbial, geochemical, and physical processes. Likewise, the processes controlling the spatial distribution of microbial mats at Laguna Negra are also unresolved. Our results suggest that in addition to the physical drivers observed in other modern environments, variability in the spatial distribution of microbialites and other carbonate morphologies at the macro- to megascale can be controlled by microbial processes. Overall, this study provides insight into the interpretation of microbialite occurrence and distributions in the geologic record and highlights the utility of geospatial statistics to probe the controls of microbialite formation in other environments.  相似文献   

20.
The importance of metals to life has long been appreciated. Iron (Fe) is the fourth most abundant element overall, and the second most abundant element that is redox-active in near-surface aqueous habitats, rendering it the most important environmental metal. While it has long been recognized that microorganisms participate in the global iron cycle, appreciation for the pivotal role that redox cycling of iron plays in energy conservation among diverse prokaryotes has grown substantially in the past decade. In addition, redox reactions involving Fe are linked to several other biogeochemical cycles (e.g., carbon), with significant ecological ramifications. The increasing appreciation for the role of microbes in redox transformations of Fe is reflected in a recent surge in biological and environmental studies of microorganisms that conserve energy for growth from redox cycling of Fe compounds, particularly in the deep ocean. Here we highlight some of the key habitats where microbial Fe-oxidation plays significant ecological and biogeochemical roles in the oceanic regime, and provide a synthesis of recent studies concerning this important physiological group. We also provide the first evidence that microbial Fe-oxidizing bacteria are a critical factor in the kinetics of mineral dissolution at the seafloor, by accelerating dissolution by 6–8 times over abiotic rates. We assert that these recent studies, which indicate that microbial Fe-oxidation is widespread in the deep-sea, combined with the apparent role that this group play in promoting rock and mineral weathering, indicate that a great deal more attention to these microorganisms is warranted in order to elucidate the full physiological and phylogenetic diversity and activity of the neutrophilic Fe-oxidizing bacteria in the oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号