首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of Cu, Fe and Zn in water, sediment and Cynothrissa mento, a commercially important fish species, were investigated from April 2007 to March 2008 at three sites in Ologe Lagoon. Metal levels in the water column and C. mento were lower than the FAO/WHO drinking water and food safety limits. In most cases, metal concentrations were highest during the dry season and lowest in the wet season. Metal concentrations in sediment and C. mento varied significantly among the sampling stations, but in the water column only the levels of Fe and Zn differed significantly between stations. Concentrations of metals in C. mento were significantly affected by wet and dry seasons. The metal concentrations in Ologe Lagoon were lower than the values reported in some Nigerian water bodies. While the Ologe Lagoon system contains the heavy metals studied, their levels in the water, sediment and fish are still within acceptable limits.  相似文献   

2.
Microorganisms inhabiting stream sediments mediate biogeochemical processes of importance to both aquatic and terrestrial ecosystems. In deserts, the lateral margins of ephemeral stream channels (parafluvial sediments) are dried and rewetted, creating periodically wet conditions that typically enhance microbial activity. However, the influence of water content on microbial community composition and diversity in desert stream sediments is unclear. We sampled stream margins along gradients of wet to dry sediments, measuring geochemistry and bacterial 16S rRNA gene composition, at streams in both a cold (McMurdo Dry Valleys, Antarctica) and hot (Chihuahuan Desert, New Mexico, USA) desert. Across the gradients, sediment water content spanned a wide range (1.6–37.9% w/w), and conductivity was highly variable (12.3–1,380 μS cm−2). Bacterial diversity (at 97% sequence similarity) was high and variable, but did not differ significantly between the hot and cold desert and was not correlated with sediment water content. Instead, conductivity was most strongly related to diversity. Water content was strongly related to bacterial 16S rRNA gene community composition, though samples were distributed in wet and dry clusters rather than as assemblages shifting along a gradient. Phylogenetic analyses showed that many taxa from wet sediments at the hot and cold desert site were related to, respectively, halotolerant Gammaproteobacteria, and one family within the Sphingobacteriales (Bacteroidetes), while dry sediments at both sites contained a high proportion of taxa related to the Acidobacteria. These results suggest that bacterial diversity and composition in desert stream sediments is more strongly affected by hydrology and conductivity than temperature.  相似文献   

3.
This study investigated effects of wet and dry seasons on the bacterial community structure of the Three Gorges Reservoir by using denaturing gradient gel electrophoresis analysis of the PCR-amplified bacterial 16S rRNA gene. Bacterial diversity, as determined by the Shannon index, the Simpson’s index, and the Richness, dramatically changed in between the dry and wet seasons. The changes in the diversity and relative abundance of microbial populations among the five sites during the wet season have become more marked than those observed during the dry season. Furthermore, cluster analysis also showed these changes. The phylogenetic analysis indicated that Betaproteobacteria is the dominant population, followed by Actinobacterium, in both the wet season and dry season. The water quality parameters were quite stable at all five sites during the same season but noticeably varied from season to season. Canonical correspondence analysis also indicated that the changes in the bacterial community composition were primarily correlated with the variations in temperature, transparency, and the concentrations of NH4 +-N. Slight changes in bacterial community composition among the five sites during the dry season were correlated with different environments. However, during the wet season, major changes were correlated not only with environments, but also it may be associated with the bacterial populations from the surrounding areas and tributaries of the Three Gorges Reservoir.  相似文献   

4.
The Effects of Bacterial Leaching on Metal Partitioning in Sewage Sludge   总被引:2,自引:0,他引:2  
The partitioning of Mn, Al, Zn, Cu and Ti ions in municipal sewage sludge was investigated before and after bioleaching processes effectuated by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Oxidation–reduction potential increase and pH decrease were obtained as a result of bacterial activity. A less pronounced and constant decrease was obtained with A. ferrooxidans, whereas A. thiooxidans presented a lag phase before a steep pH decrease. Metal solubilization was accomplished in experimental systems supplemented with energy source, Fe2+ for A. ferrooxidans and S0 for A. thiooxidans. Solubilization efficiency differed for each metal except for Al, and was relatively similar for either organism. Metal partitioning was conducted using a five-step sequential extraction procedure before and after the bioleaching. The results indicated that Zn and Mn ions were mostly associated with the organic fraction, whereas Cu, Al and Ti ions with the sulphide/residue fraction. The bioleaching process caused prompt solubilization of metals mostly associated with the more labile fractions (exchangeable, adsorbed and organically bound metals), whereas those associated to the less labile ones (EDTA and sulphide/residue fractions) were exchanged towards more labile fractions.  相似文献   

5.
The purpose of this study was to leach Cu, Zn, As, and Fe from contaminated soil and sediment samples with indigenous heterotrophic bacteria isolated from the study sites. The sediment contained Fe in the form of goethite and low concentrations of other metals. The soil contained hematite and high concentrations of other metals. The environmental conditions affected the bacterial activity in the metals dissolution. As and Fe were the major metals leached from the sediment sample while a minor fraction of Cu was solubilized. Cu and Zn were the major metals leached from the soil sample while only a minor fraction of Fe was dissolved. As a control, a disinfectant was used for partial inactivation of indigenous bacteria. This treatment had a negative effect on the leaching of Fe, Zn and As from soil and sediment samples, but it increased Cu dissolution from the sediment. Bacterial different dissolution of Fe during soil and sediment bioleaching was also investigated with ferrihydrite. The iron concentration was much higher during ferrihydrite dissolution when indigenous bacteria from sediment were used compared to indigenous bacteria isolated from soil. The indigenous bacterial inoculum provided more biological and metabolic diversity which may account for the difference in reductive iron reduction from ferrihydrite. The Bacillus cultures isolated from soil and sediment samples showed similar efficiencies in reductive dissolution of ferrihydrite. The synergetic bacterial inhibition effect created by the environmental conditions can influence bioremediation effect.  相似文献   

6.
A free water surface wetland was built in 2002 to treat wastewater from a tool factory containing metals (Cr, Ni, Zn and Fe), nutrients and organic matter. Until 2006, the last reported period, the wetland retained metals and stored them primarily in the bottom sediment and in the biomass of macrophytes secondarily. The aim of this work was to study metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Total concentrations and fractions (exchangeable, carbonate-bound, Fe-Mn oxides-bound, organic matter-bound and residual) of metals in sediment were analyzed in this treatment wetland, in order to estimate the fate of metals over time. Metal concentrations were significantly higher in the inlet than in the outlet sediment; concentrations in the latter remained without significant differences throughout the testing period. Metal concentrations and redox potential decreased with depth within the sediment. The lowest metal concentrations and pH and the highest redox values were attained in spring, in agreement with the period of maximum macrophyte growth. Ni and Zn were mainly stored associated with the carbonate fraction; Cr was mainly associated with the Fe-Mn oxides fraction, while Fe was mainly associated with the residual fraction, probably as pyrite. The incoming wastewater composition containing high pH, carbonate, calcium and Fe concentrations favored the observed association in the surface sediment. It would be expected that sediment will continue retaining metals in fractions that will not release them into the water while the chemical and environmental conditions remain unchanged.  相似文献   

7.
Superficial (0 to 2 cm) sediments were sampled from 62 sites in Kattegat and Skagerrak during autumn 1989 and spring 1990, tested for toxicity to Daphnia magna and Nitocra spinipes (Crustacea) and analyzed for heavy metals (Cd, Cr, Cu, Hg, N, Pb, Zn), nutrients (N and P) and organic carbon. Whole sediment toxicity to Nitocra spinipes, expressed as 96-h LC50, ranged from 1.8 to > > 32 percent sediment (wet wt), which is equivalent to 0.63 to 53 percent dry wt. Sediment total metal concentrations (mg kg-1 dry wt) ranged from 0.01 to 0.32 for Cd, 8 to 57 for Cr, 3 to 40 for Cu, 0.03 to 0.86 for Hg, 3 to 43 for Ni, 6 to 37 for Pb and 21 to 156 for Zn. Analyzed concentrations of heavy metals were tested for correlation with whole sediment toxicity normalized to dry wt, and significant correlations (Spearman p<0.05) were found for Cd, Cr, Cu, Hg, and Ni. However, the analyzed concentrations of these metals were below the spiked sediment toxicity of these heavy metals to N. spinipes, except for Cr and Zn for which analyzed maximum concentrations approached the 96-h spiked sediment LC50s. There was no improvement in correlation between the sum of heavy metal concentrations normalized to their spiked toxic concentrations (Toxic Unit approach) and the whole sediment toxicity. Calculated heavy-metal-derived toxicity based on toxic units and whole sediment toxicity ranged from 0.1 to 24 (mean value 2.3 and SD 4.2). Theoretically, a value of 1.0 would explain whole sediment toxicity from measured metal concentrations using this approach. Thus, in spite of the fact that the total concentrations of the heavy metals were sufficient to cause toxicity based on an additive model for most of these sediments, the observed toxicity of the sediments from Kattegat and Skagerrak could not exclusively be explained by the concentrations of heavy metals, except for Cr and Zn at their maximum concentrations. Therefore, other pollutants than these heavy metals must also be considered as possible sediment toxicants.  相似文献   

8.
9.
Serrano  L.  Calzada-Bujak  I.  Toja  J. 《Hydrobiologia》2003,492(1-3):159-169
This study reports on the spatial and temporal variability of the phosphate composition in the sediment of a temporary pond over a period of 3 years using the EDTA-method for P-fractionation. Sediment samples were collected at three different sites (open-water, littoral and flood plain) to compare the effect of the length of the wet/dry phase on the sediment phosphate composition, with special emphasis on the potential bioavailability of the P-fractions.Fine sediments (<0.1 mm) were rich in organic matter (9–25%) and contained high mean concentrations of Tot-P (182–655 mg kg–1 d.w.), especially in the flood plain sediment. The sediment P composition was dominated by P-organic fractions at all sites (64–94%). The average C/N ratios were 8.8, 6.0 and 5.9 for sediments of the flood plain, littoral and open-water sites, respectively. The flood plain sediment was significantly poorer in iron-bound P (FeOOHP), but richer in the P-organic fractions extracted by EDTA than the sediment of the open-water site (P<0.01). The percentage of organic matter increased significantly in the sediment of the open-water site at the end of each dry season (P<0.05), while it decreased in the sediment of the flood plain site (P<0.01). In all sediments, the fraction of Fe(OOH)P decreased at the end of each dry season and some of these changes were significant (P<0.05). The decrease in the fraction of Fe(OOH)P was not related to changes in the sediment redox potential. Although the flood plain site was dry longer than the open-water site during the study period, the differences between the sediment composition of both sites were probably due to the effect of plant growth on the dry sediments of the flood plain site rather than to a direct effect of desiccation.  相似文献   

10.
The present study was conducted to investigate the potential of Vossia cuspidata as a phytoremediator to accumulate heavy metals from polluted water bodies. Thirty-two quadrats, distributed equally in eight sites (six polluted sites along the Ismailia canal and two unpolluted sites along the Nile River) were selected seasonally for plant, water, and sediment investigations. Winter plants recorded the highest values of shoot height, diameter, and leaf width, but the lowest shoot density. Plants collected in autumn had the lowest values of leaf length, width, and area, while those collected in spring had the highest shoot density, with the lowest shoot height. Summer populations had the highest fresh and dry plant biomass, while winter plants had the lowest. Fresh production and dry biomass of V. cuspidata in the unpolluted Nile were significantly higher than those in polluted canals. Chlorophyll a and carotenoid concentrations were reduced under pollution stress. Spring plants accumulated the highest concentrations of Cr, Cu, and Pb in their root, and the lowest concentrations of Al, Cd, Cr, and Zn in their shoot. The bioaccumulation factor for most investigated metals, except Al, Cr, and Fe was greater than 1, while the translocation factor of all metals was less than 1, therefore this plant is considered to be a potential for these metals phytostabilization.  相似文献   

11.
Sun  Yuxin  Wu  Jianping  Shao  Yuanhu  Zhou  Lixia  Mai  Bixian  Lin  Yongbiao  Fu  Shenglei 《Ecological Research》2011,26(3):669-677
Prescribed burning is a common site preparation practice for forest plantation in southern China. However, the effects of prescribed burning on soil microbial communities are poorly understood. This study examined changes in microbial community structure, measured by phospholipid fatty acids (PLFAs), after a single prescribed burning in two paired vegetation sites in southern China. The results showed that the total amount of PLFA (totPLFA) was similar under two vegetation types in the wet season but differed among vegetation type in the dry season, and was affected significantly by burning treatment only in the wet season. Bacterial PLFA (bactPLFA) and fungal PLFA (fungPLFA) in burned plots all decreased compared to the unburned plots in both seasons (P = 0.059). Fungi appeared more sensitive to prescribed burning than bacteria. Both G+ bacterial PLFA and G bacterial PLFA were decreased by the burning treatment in both dry and wet seasons. Principal component analysis of PLFAs showed that the burning treatment induced a shift in soil microbial community structure. The variation in soil microbial community structure was correlated significantly to soil organic carbon, total nitrogen, available phosphorus and exchangeable potassium. Our results suggest that prescribed burning results in short-term changes in soil microbial communities but the long-term effects of prescribed burning on soil microbial community remain unknown and merit further investigation.  相似文献   

12.
Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4‐region gene fragments obtained by PCR amplification of community genomic DNA with bacterial‐ or archaeal‐specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158 686 bacterial and 225 591 archaeal sequences from 20 sediment samples, representing five 2‐cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor‐joining analysis using Chao–Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96–99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus‐related sequence abundance was correlated with high solid‐phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between sampling times, and increased to high relative abundance with sediment depth. These results provide further evidence that marine sediment microbial community composition can be structured according to sediment chemistry and suggest the expansion of hypoxia in coastal waters may alter sediment microbial communities involved in carbon and nitrogen cycling.  相似文献   

13.
Surface sediment samples were collected from a source water reservoir in Zhejiang Province, East of China to investigate pollution characteristics and potential ecological risk of heavy metals. The BCR sequential extraction method was used to determine the four chemical fractions of heavy metals such as acid soluble, easily reducible, easily oxidizable and residual fractions. The heavy metals pollution and potential ecological risk were evaluated systematically using geoaccumulation index (Igeo) and Hakanson potential ecological risk index (H′). The results showed that the sampling sites from the estuaries of tributary flowing through downtowns and heavy industrial parks showed significantly (p < 0.05) higher average concentrations of heavy metals in the surface sediments, as compared to the other sampling sites. Chemical fractionation showed that Mn existed mainly in acid extractable fraction, Cu and Pb were mainly in reducible fraction, and As existed mainly in residual fraction in the surface sediments despite sampling sites. The sampling sites from the estuary of tributary flowing through downtown showed significantly (p < 0.05) higher proportions of acid extractable and reducible fractions than the other sampling sites, which would pose a potential toxic risk to aquatic organisms as well as a potential threat to drinking water safety. As, Pb, Ni and Cu were at relatively high potential ecological risk with high Igeo values for some sampling locations. Hakanson potential ecological risk index (H′) showed the surface sediments from the tributary estuaries with high population density and rapid industrial development showed significantly (p < 0.05) higher heavy metal pollution levels and potential ecological risk in the surface sediments, as compared to the other sampling sites.  相似文献   

14.
Given that fish are considered as one of the best pollution indicators of aquatic ecosystems, numerous studies have been carried out on metal pollution in fish. Metal concentrations are commonly expressed either per unit of wet or dry tissue weight. However, there is a lack of standardized reporting of elemental concentrations, with the majority publications using dry tissue weight as a measurement unit. Moreover, a significant number of papers also does not clearly report which of the two measurement units is used. Lack of standardized reporting obstructs comparability of studies that use different measurement units, which could be resolved either by reporting elemental concentrations using both types of measurement units (i.e., with one of them provided in the supplementary material, or alternatively to provide wet to dry weight conversion factors). This issue, while being of substantial importance for the scientific community, has not received proper attention so far.  相似文献   

15.
Lake Albufera (Valencia, Spain) is part of a legally protected wetland of international importance. However, it has deteriorated as a result of urban, industrial, and farming pollution. It is highly eutrophic, and its sediment contains persistent pollutants, such as heavy metals. In anoxic sediments, sulphides represent an important binding phase for heavy metals. In this study, acid volatile sulphide (AVS) and simultaneously extracted metals (SEM) were analyzed in surface sediment extracted from Lake Albufera; organic matter and total metals were also analyzed. Twelve sites were sampled in each of three sampling campaigns conducted in March and September 2007 and September 2008. The results revealed elevated organic matter contents varying between 6.9 and 16.7%. The concentrations of AVS in the lake were high, ranging from 8.5 to 48.5 μmol/g; the lowest concentrations were found in the central sites. The AVS results displayed significant differences between the samples from the winter and summer of 2007 (p < 0.05) but not between the two summer samples. The results obtained for SEM varied from 1.4 to 4.8 μmol/g. The difference SEM-AVS was less than zero for all sampling locations and campaigns, indicating the existence of a sulphide pool able to bind metals.  相似文献   

16.
The concentrations of Fe, Mn, Ni, Pb and V in water, sediment and the gill, liver and muscle tissues of Synodontis resupinatus, Heterotis niloticus and Clarias gariepinus, all commercially important fish species of the lower Niger River, were investigated in 2015. Water, sediment and fish samples were collected for six months and heavy metals were determined using an Atomic Absorption Spectrometer. Fe ranked highest in water and sediment, with concentrations of 2.74 mg l?1 and 61.60 mg kg?1, respectively. Metals followed the magnitude of Fe > Mn > Ni > V > Pb in the water and Fe > Mn > V > Ni > Pb in the sediments. Metal concentrations were higher in the tissues of S. resupinatus compared with H. niloticus and C. gariepinus. Fe was also highest in the gills, liver and muscle of the three fish species. Its highest concentration of 132.97 mg kg?1 dry weight was recorded in the gills of S. resupinatus. Bioconcentration factors of metals ranged from 8.79 for Mn in H. niloticus muscle to 67.99 for Ni in S. resupinatus gills. The fish species studied pose no health risk for all metals studied, because the target hazard quotient was less than 1 and the estimated daily intakes of the metals were below the reference doses.  相似文献   

17.
An ecological survey was carried out to determine the levels of nutrients and heavy metals in the sediments and leaf tissues of two dominant mangrove plant species, Kandelia candel and Aegiceras corniculatum, in Futian mangrove forest, Shenzhen, the People's Republic of China. The spatial and seasonal variations of these elements were also investigated. The results show that there was no major difference between two sampling sites 150 m apart. In both sites, the sediment concentrations of total and NH4 +-N, total and extractable P, total and extractable K, total organic carbon were consistently higher in the landward locations and decreased gradually towards the sea. The sediment sample collected at the seaward edge of the mangrove plant community had the lowest levels of nutrient and organic matter. The vertical variations (from the land to the sea) of sediment heavy metals were less obvious and no particular trend could be identified. Extremely high contents of Cu, Cd, Pb, Cr and Zn were found at certain locations, suggesting the occurrence of some local contamination. The mean total metal concentrations in sediments decreased in the order Mn > Zn > Cu > Cr = Pb > Cd for the sample locations. Most of the heavy metals were not in a bioavailable form as the concentrations of extractable metals were relatively low (< 1% of total metals). Pb, Cr and Cd were not detected in leaf samples. Leaf C, N, P and K contents were similar between the two species and no significant difference was found among locations, although A. corniculatum seemed to have lower Mn concentrations than K. candel. With reference to temporal variations, no significant difference in sediment concentrations of some nutrients and metals was found between the spring and autumn seasons.  相似文献   

18.
Uptake and biliary excretion of metals were studied in rainbow trout, Oncorhynchus mykiss, exposed through spiked sediment to a mixture of seven heavy metals. Metal concentrations and toxicity of bile and blood plasma were used as indicators of exposure. Among the seven metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) only three (Cu, Hg, and Pb) were concentrated in the bile (bile-plasma ratio >1). Bile-plasma ratios in the rainbow trout were similar to those found in rats for Cu and Hg. Daphnia magna bioassays were used to determine toxicity of bile and blood plasma in the same trout. Toxicity of bile and blood plasma increased after treatment with acid. An analysis of variance (ANOVA) showed that toxicity of bile and blood plasma to D. magna in metal-exposed trout was significantly correlated with (1) bile and blood plasma test concentration, (2) acid treatment of bile and blood plasma (hydrolysis of metal-plasma and metal-bile complexes) and (3) sediment concentration of metals during exposure of trout. In order to significantly detect the magnitude of the exposure to a xenobiotic the biomarker must respond in a dose- or time-dependent manner. Therefore, the potential use of bile toxicity as a biomarker of heavy metal exposure in fish is probably limited by the low bioconcentration of many of these toxicants in bile.  相似文献   

19.
Hill  B. H.  Willingham  W. T.  Parrish  L. P.  McFarland  B. H. 《Hydrobiologia》2000,428(1):161-169
The effects of elevated metals on stream periphyton in the Eagle River, a mining impacted river in central Colorado, were assessed in 1991 and 1992 using assemblage information (taxa richness, community similarity) and non-taxonomic measures (biomass, chlorophyll a, autotrophic index). The number of periphyton genera collected ranged from 2 at a site adjacent to abandoned mining operations to 21 at a downstream site, but was not significantly correlated with dissolved metals concentrations. Fragilaria and Achnanthes were the dominant genera at all sites, with Fragilaria dominating the less impacted sites and Achnanthesdominating at the more impacted sites. Taxonomic similarity was greatest among those sites receiving the greatest inputs of metals from mining operations, where the coefficient of similarity ranged from 0.87 to 0.99. Cluster analyses revealed significant differences among sites adjacent to the mine and either the upstream or downstream sites. Chlorophyll a content of periphyton and the autotrophic index in both years showed significant downstream decreases associated with increasing dissolved metals concentrations. Overall, the periphyton community data were able to separate metal contaminated sites from reference or less impacted sites, and responded in predictable ways to increasing metal concentrations of Eagle River water.  相似文献   

20.
The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号