首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrite-dependent anaerobic methane oxidation (n-damo) process, mediated by Candidatus Methylomirabilis oxyfera of the candidate phylum NC10, was discovered recently which plays an important role in coupling the global nitrogen and carbon cycles. However, the distribution and diversity of this new anaerobic methane-oxidizing microorganism have not been investigated in desert lakes yet. The present study successfully retrieved n-damo bacterial 16S rRNA and pmoA gene sequences using PCR technique from lakes in Badain Jaran Desert of China. Phylogenetic analyses showed that n-damo bacteria widely occurred in brine and freshwater lakes on the desert with high diversity, including both sediment and water samples. The results of quantitative PCR indicated that the abundance of the 16S rRNA gene in lake sediments varied from 1.12?±?0.68?×?105 to 1.64?±?0.70?×?105 copies g?1 (dry weight), while that in water samples per milliliter was generally one order of magnitude lower than sediments. Correlation analyses suggested that n-damo bacterial abundance and diversity strongly depended on salinity. In lake sediments, the distribution, abundance, and diversity of n-damo bacteria were significantly associated with depth due to the concentration gradient of the NOx- and ammonium. This study provided new insights into both the n-damo community patterns and its interaction with ambient environmental factors in the desert lake ecosystem.  相似文献   

2.
Knowledge of the bacterial community structure in sediments is essential to better design restoration strategies for eutrophied lakes. In this regard, the aim of this study was to quantify the abundance and activity of bacteria involved in nutrient and iron cycling in sediments from four Azorean lakes with distinct trophic states (Verde, Azul, Furnas and Fogo). Inferred from quantitative PCR, bacteria performing anaerobic ammonia oxidation were the most abundant in the eutrophic lakes Verde, Azul and Furnas (4.5-16.6%), followed by nitrifying bacteria (0.8-13.0%), denitrifying bacteria (DNB) (0.5-6.8%), iron-reducing bacteria (0.2-1.4%) and phosphorus-accumulating organisms (<0.3%). In contrast, DNB dominated sediments from the oligo-mesotrophic lake Fogo (8.8%). Activity assays suggested that bacteria performing ammonia oxidation (aerobic and anaerobic), nitrite oxidation, heterothrophic nitrate reduction, iron reduction and biological phosphorus storage/release were present and active in all Azorean lake sediments. The present work also suggested that the activity of DNB might contribute to the release of phosphorus from sediments.  相似文献   

3.
Being both stable carbon sinks and greenhouse gas sources, boreal lake sediments represent significant players in carbon (C) cycling. The release of dissolved organic carbon (DOC) into anoxic water is a widespread phenomenon in boreal lakes with impact on sediment C budgets. The association of OC with iron (Fe) is assumed to play an important role for this anoxic OC release via the dissimilatory reduction of Fe, but also to influence the stabilization of OC in sediments. To investigate the role of Fe–OC association for OC dynamics in different boreal lake sediments, we compared the content of Fe-bound OC [Fe–OC, defined as citrate bicarbonate dithionite (CBD) extractable OC] and the extent of reductive dissolution of solid-phase Fe and OC at anoxia. We found high among-lake variability in Fe–OC content, and while the amount of Fe–OC was high in three of the lakes (980–1920 µmol g?1), the overall contribution of Fe–OC to the sediment OC pool in all study lakes was not higher than 11%. No linkages between the amount of the Fe–OC pool and lake or sediment characteristics (e.g., pH, DOC concentration, sediment OC content, C:N ratio) could be identified. The observed release of OC from anoxic sediment may be derived from dissolution of Fe–OC in the lake sediments with high Fe–OC, but in other lake sediments, OC release during anoxia exceeded the sediment Fe–OC pool, indicating low contribution of reductive Fe dissolution to OC release from these lake sediments. The range of the investigated boreal lakes reflects the high variability in the size of the sediment Fe–OC pool (0–1920 µmol g?1) and CBD-extractable Fe (123–4050 µmol g?1), which was not mirrored in the extent of reductive dissolution of Fe (18.9–84.6 µmol g?1) and OC (1080–1700 µmol g?1) during anoxia, suggesting that Fe-bound OC may play a minor role for sediment OC release in boreal lakes. However, studies of redox-related OC cycling in boreal lake sediments should consider that the amount of Fe–OC can be high in some lakes.  相似文献   

4.
The biodiversity of heterotrophic viable bacteria (209 isolates) in the hypersaline Bardawil Lagoon, Egypt, was studied. Composition and extracellular activities of viable culturable heterotrophic bacteria (VCHB) in the water and in non-colonised and seagrass-colonised sediments of Bardawil Lagoon were determined bimonthly during 1997 and 1998. The average ± SD total Kjeldhal nitrogen was 1.69 ± 0.44 mg l?1 in water, 335.95 ± 19.22 mg kg?1 in colonised sediments, and 215.5 ± 16.0 mg kg?1 in non-colonised sediments. Exoenzymatic bacterial activity (glycosidase) presented a seasonal trend with average values of 1.02 ±0.16 μM cm?3 min?1 in colonised sediment samples and was 0.36 ± 0.27 μM cm?3 min?1 in non-colonised sediments. Mean of VCHB was 4 017 ± 565 cfu g?1 and 1 195 ± 242 cfu g?1 for colonised and non-colonised sediments, respectively. Bacterial isolates from Bardawil Lagoon water and sediments yielded a wide diversity of VCHB: a total of 209 different species, belonging to 13 genera from the water and 12 genera from the sediments.  相似文献   

5.
Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study, we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long‐term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for lakes in China, corresponding to terrestrial organic matter input due to land‐use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (mean ± SE) 0.47 ± 0.05 mm yr?1 and 7.7 ± 1.4 g C m?2 yr?1 in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr?1) was higher than those in other regions (< 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon‐influenced regions.  相似文献   

6.
新疆天山北坡不同盐湖微生物菌群结构及其影响因子   总被引:1,自引:0,他引:1  
李二阳  马雪莉  吕杰  马媛  吕光辉 《生态学报》2021,41(18):7212-7225
新疆分布的众多湖泊由于干旱气候成盐作用强烈,近半数已演化到盐湖发展阶段,不同盐湖中也因此蕴含着丰富的耐盐及嗜盐微生物资源。为更好的掌握新疆盐湖微生物资源分布规律及对环境因子变化的响应规律,利用高通量测序技术对新疆天山北坡5个不同演化阶段盐湖湖底沉积物中细菌、古菌多样性和菌群结构及其主要驱动因子进行研究,探讨盐湖演化过程中原核微生物群落结构变化规律。分别采集5个盐湖湖底沉积物样本,进行理化因子测试与细菌和古菌16S rRNA扩增子测序分析,比较不同盐湖理化性质和原核微生物菌群差异,并对原核微生物丰度与环境因子进行关联分析。实验结果表明:5个盐湖湖底沉积物总盐和Na+含量顺序为:巴里坤湖 > 伊吾湖 > 艾比湖 > 盐湖 > 柴窝堡湖,除艾比湖外其他四个盐湖沉积物均呈碱性。Alpha多样性结果显示5个盐湖细菌richness、chao1、ACE和shannon丰富度指数均大于古菌相应丰富度指数,不同盐湖细菌丰富度指数差异较大,古菌丰富度指数差异相对较小。从5个盐湖湖底沉积物中共检测获得细菌58门、68纲、138目、253科和560属,古菌4门、8纲、12目、21科和60属,细菌以变形菌门为主,古菌以广古菌门为主。不同盐湖细菌和古菌优势属种类均不相同,巴里坤湖主要是一些嗜盐和耐盐细菌属,而伊吾湖主要是嗜盐和耐盐古菌属,PCoA分析结果也表明不同盐湖微生物在OTUs水平有其独特菌群结构类型。RDA和Bioenv分析结果表明,盐湖湖底沉积物中微生物菌群群落结构主要受Na+和总盐(TS)浓度的影响,对细菌菌群结构影响较大,而古菌菌群结构可能受多种理化因子共同调节。此外,盐湖特殊卤水成分会对微生物群落结构产生重大影响。  相似文献   

7.
Alpine lakes receive a large fraction of their nutrients from atmospheric sources and are consequently sensitive to variations in both the amount and chemistry of atmospheric deposition. In this study we explored the spatial changes in lake water chemistry and biology along a gradient of dust deposition in the Wind River Range, Wyoming. Regional differences were explored using the variation in bulk deposition, lake water, sediment, and bedrock geochemistry and catchment characteristics. Dust deposition rates in the Southwestern region averaged 3.34 g m?2 year?1, approximately three times higher than deposition rates in the Northwestern region (average 1.06 g m?2 year?1). Dust-P deposition rates ranged from 87 µg P m2 day?1 in the Northwestern region to 276 µg P m2 day?1 in the Southwestern region. Subalpine and alpine lakes in the Southwestern region had greater total phosphorus (TP) concentrations (5–13 µg L?1) and greater sediment phosphorus (SP) concentrations (2–5 mg g?1) than similar lakes elsewhere in the region (1–8 µg L?1 TP, 0.5–2 mg g?1 SP). Lake phosphorus concentrations were related to dissolved organic carbon (DOC) across vegetation gradients, but related to the percent of bare rock, catchment area to lake area, and catchment steepness across dust deposition gradients. Modern phytoplankton and zooplankton biomasses were two orders of magnitude greater in the Southwest than in the Northwest, and alpine lakes in the Southwest had a unique diatom species assemblage with relatively higher concentrations of Asterionella formosa, Pseudostaurosira pseudoconstruens, and Pseudostaurosira brevistriata. These results suggests that catchment controls on P export to lakes (i.e. DOC) are overridden in dominantly bare rock basins where poor soils cannot effectively retain dust deposited P.  相似文献   

8.
1. Sediments from hypereutrophic Lake Vallentunasjön were enriched with Microcystis colonies from the lake water, thereby simulating the conditions after the autumn sedimentation. Release of phosphorus to the overlying lake water was followed during 2–3 weeks in the laboratory. X-ray microanalysis of individual Microcystis and bacterial cells, and chemical phosphorus fractionation, were used to assess the phosphorus pool size in different fractions of the sediment. 2. Benthic Microcystis colonies, most of these having survived within the sediment for 1 year or more, were less susceptible to decomposition, and the specific growth rate of bacteria in their mucilage was lower than for other sediment bacteria. 3. Pelagic Microcystis colonies from late August were resistant to decomposition, when placed on the sediments. When Microcystis colonies from a declining pelagic population in October were added to the sediments, however, a substantial fraction of these colonies was decomposed. The specific growth rate of mucilage bacteria was five times higher than for other sediment bacteria. 4. Release of molybdate-reactive phosphorus to the overlying lake water was larger from sediment cores enriched with Microcystis colonies than from control cores. Chemical phosphorus fractionation showed a decrease in organic-bound phosphorus (residual P). 5. X-ray microanalysis showed that the phosphorus bound in Microcystis cells decreased by -0.300 mg g?1 DW in the October experiment, due both to a decrease in biomass (i.e. mineralization) and to a decrease in phosphorus content in the remaining cells. Heterotrophic bacteria increased their cellular concentration of phosphorus. The net release of phosphorus from the Microcystis and bacterial pools corresponded to 74% of the decrease of organic-bound phosphorus in the chemical phosphorus fractionation, and to 65% of the decrease of total phosphorus in the upper 0–1 cm of the sediment. 6. Benthic bacteria and cyanobacteria may thus contribute significantly to changes in phosphorus content and turnover of the sediment by changes in their biomass, turnover rate and cellular phosphorus content.  相似文献   

9.
The levels of soil parameters and selected heavy metals around a solid waste dumpsite receiving untreated wastes from all sources and a control site within Port Harcourt, Nigeria have been examined. Top soil (0–15 cm) and sediment samples were collected and analysed for pH value, particle size, total nitrogen, potassium, available phosphorus, organic matter, effective cation exchange capacity, cadmium, nickel and lead using standard methods. The results showed that the waste dump contributed to the high levels of nutrients and heavy metals. The dry season mean concentrations were: organic matter (5.28 ± 1.34% or 132,422.4 kg ha?1), K (1.60 ± 0.52 meq per 100 g), N (0.09 ± 0.06% or 2257.2 kg ha?1), Av.P (15.11 ± 7.57 μg g?1), Cd (1.34 ± 0.72 μg g?1), Ni (4.10 ± 1.63 μg g?1) and Pb (38.85 ± 22.18 μg g?1) while the wet season mean concentrations were organic matter (5.46 ± 1.39% or 136,936.8 kg ha?1), K (2.79 ± 0.81 meq per 100 g), N (0.10 ± 0.05% or 2508 kg ha?1), Av.P (9.22 ± 2.69 μg g?1), Cd (1.72 ± 1.22 μg g?1), Ni (14.95 ± 14.94 μg g?1) and Pb (53.50 ± 40.09 μg g?1). There was efficient mineralization process in the area. The texture of soil on the main dumpsite was loamy sand, which suggests that the ground water in the area is susceptible to contamination by surface pollutants. The texture of soil at the control site is sandy loam while sediment has the textural class of sand. Decomposed organic materials and agricultural activities influenced the texture of soils. The soils from the main dump and sediment were slightly alkaline while the control soil was moderately acidic. In both seasons, a significant variation exists (P < 0.05) between the metal concentrations in soil at the main dump and those in the sediments with a positive correlation (r = 0.572149) in the wet season and (r = 0.956647) in the dry season. The presence of liming materials and activities of microorganisms on the waste dump increased the pH of the soils. The accumulation of nutrients results in the luxuriant growth of plants/crops on the waste dump.  相似文献   

10.
As part of a larger study to assess the influence of land use on riverine and atmospheric phosphorus (P) loading to Lake Victoria, P sorption characteristics of eight composite bottom sediment samples from the Simiyu and Kagera rivers were determined using the Langmuir equation. The samples had low to medium Langmuir adsorption maxima (Γm), ranging from 107 to 201μg g?1. Langmuir binding energy co-efficient (K) ranged from 60 to 181μg l?1 and the equilibrium P concentration at zero sorption (EPC0) from 0.1 to 2.75μg g?1. By using Langmuir co-efficients derived from P sorption experiments and soluble reactive phosphorus (SRP) concentrations measured in rivers as well as the in-shore waters of Lake Victoria, it was possible to determine the potential release of SRP into the lake by sediment from the two catchments. For the 2000 water-year, it was estimated that about 28.65 ± 0.89 (mean ± SD) and 66 ± 6.76 tons of SRP were released into Lake Victoria by sediment deposited by the Simiyu and Kagera rivers, respectively. The implications of these results to future management of cultural eutrophication in Lake Victoria are also discussed.  相似文献   

11.
In Eastern Harbour (EH) of Alexandria (Egypt), where an under-water museum is planned to be built, the distribution of some heterotrophic bacteria and their relationships to physical parameters and biochemical composition of the sedimentary organ ic matter were investigated. The Eastern Harbour is a relatively shallow semi-closed basin and is sheltered from the sea by an art ificial breakwater leaving two openings, El-Boughaz and El-Silsila. Seven stations covering the area of the EH were selected and surface sediments were collected seasonally from spring to winter 2002. The near bottom temperature varied seasonally with a minimum value in winter and a maximum in summer. In contrast to the temperature values, dissolved oxygen exhibited maximum values in cold seasons. The seasonal average of the total organic carbon ranged from 0.48 ± 0.16 to 4.42 ± 2.46%, while the total organic nitroge n ranged from 0.07±0.08 to 0.42±0.38%. The total carbohydrate had minimum and maximum values of 273 μg g?1 and 6539 μg g?1. The combined amino acids represented the dominant biochemical class of organic matter in the EH sediments with an average of 365 ± 1911 μg g?1. The total bacterial count ranged from 1.4 × 104 to 1.4 × 107 colony forming unit (CFU) g?1 sediment dry weight. Amylolytic bacterial group was recorded in almost all sites and seasons, while proteolytic bacteria were dominant in spring and au tumn. The variation in the abundance of amylolytic and proteolytic bacterial groups was found to be parallel to the variation in soluble carbohydrates and free amino acids. High percentage of H2S-producing bacteria was reported during summer at some stations confirming the low oxygen content of the sediment at these sites. Agar-degrading bacteria were found only in warm seasons. The count of co liform bacteria in the EH sediments was very low (<10 CFU g?1) during all monitored seasons indicating that the EH marine environment was almost free of domestic waste discharge during this period.  相似文献   

12.
1. Recent experimental and field studies on temperate shallow lakes indicate that nitrogen may play a greater role in their functioning than previously thought. Several studies document that abundance and richness of submerged macrophytes, both central in shallow lake ecology, may decrease with increasing nitrogen loading, especially at high phosphorus levels. However, the role of nitrogen in warm lakes with fluctuating water regimes remains to be described in detail. 2. The effect of increasing nitrate and phosphate concentrations on submerged macrophyte growth was examined in a 3‐month mesocosm experiment conducted in summer in a shallow freshwater lake on the north western coast of Turkey with a Mediterranean climate. Twenty four field mesocosms, open to the sediment and atmosphere, were stocked with Myriophyllum spicatum shoots and small cyprinid fish. Three nitrate loadings in combination with two phosphate loadings were applied in a fourfold replicated design. 3. Mean ± SD nutrient concentrations maintained throughout the experiment were 0.55 ± 0.17, 2.2 ± 0.97, 9.2 ± 5.45 mg L?1 total nitrogen and 55 ± 19.2, 73 ± 22.9 μg L?1 total phosphorus. Mean periphyton biomass increased with increasing nutrient concentrations and peaked at the highest nitrogen and phosphorus loadings, while the mean phytoplankton biomass remained relatively low in all treatments. 4. Percent volume inhabited (% PVI) by macrophytes throughout the experiment and total macrophyte biomass at the end of the experiment did not differ among treatments. In addition to stocked M. spicatum, Ceratophyllum demersum and Potamogeton crispus appeared in the majority of the mesocosms. The plants grew continuously up to 50% PVI throughout the experiment and remained resilient to shading provided by periphyton and phytoplankton. 5. The mean summer air temperature in 2007 was 2.2 °C higher than the average of the last 32 years, which resulted in a water level decrease of 0.3 m in the mesocosms over three months. This might have counteracted the shading of submerged macrophytes provided by phytoplankton and periphyton. The results of the experiment are consistent with observations of higher macrophyte resilience to nutrient loading in Mediterranean lakes compared with northern temperate lakes.  相似文献   

13.
The organic phosphorus mineralizing bacteria (OPB) play an important role in phosphorus cycling in lake sediment, to which less attention has been paid. Monthly sediment samples in 2009 ending in October, together with the samples from different seasons (May, July, October, and December) in 2008, were collected at 6 sites in a Chinese large shallow eutrophic lake (Lake Taihu). The sediment OPB numbers ranged from 2.2 × 106 to 1.79 × 108 cells g?1 (dry weight) at different sampling sites and in different seasons, with the average being 3.88 × 107 cells g?1 (dry weight). Its number was highest at the most polluted site and peaked in spring and summer, which can be explained by the enrichment of organic matter in sediment. Furthermore, there existed a significant positive relationship between the OPB numbers and alkaline phosphatase activities in the sediment. The 6 OPB strains isolated from the sediment were distinct in terms of their colony morphology on the yolk agar, biochemical characteristics and phosphorus release abilities. According to the 16S rDNA sequences, these OPB belong to Bacillus cereus, Stenotrophomonas maltophilia, Stenotrophomonas sp., Bacillus cereus, Xanthomonas sp., Pseudomonas sp. They were distinguished from the OPB species recorded in a Chinese small shallow eutrophic lake whose sediment organic content was remarkably higher. Taken together, organic matter shaped the OPB community not only quantitatively but also qualitatively, which in concert facilitated the enzymatic hydrolysis of organic phosphorus in lake sediment.  相似文献   

14.
Available phosphorus in lake sediments in The Netherlands   总被引:4,自引:3,他引:1  
Klapwijk  S. P.  Kroon  J. M. W.  Meijer  M -L. 《Hydrobiologia》1982,91(1):491-500
The amount of phosphorus available to algae in the sediments of four lakes in the western part of the Netherlands has been assessed by means of chemical extraction and bioassay techniques. In addition to direct chemical sediment analyses, extractions were carried out with an NTA column method and a stepwise NH4 Cl-NaOH-HCI shaking method, the latter supposedly separating the weakly bound, the Fe- and Al-bound and the Ca-bound phosphates in the sediments. Bioassays, with sediment as the sole source of P, were made withScenedesmus quadricauda in modified Skulberg's 28 medium to determine the amount of phosphates available to algae.The average total P concentration of the sediments varied from 0.8 to 3.6 mg P g–1 dry wt and correlated well with the net external P loading of the lakes. Uptake of P by algae in the bioassays varied from 0.4 to 36% — while NTA extracted 36–69% of the total P. The ratio NH4Cl extracted/ NaOH extracted/ HCI extracted phosphates is different from lake to lake, although in all lakes the highest extractions (27–62% of total P) are found in the NaOH fraction. However, in the peaty sediments of these lakes, the NaOH step extracted not only the Fe- and Al-bound phosphates but, also, large amounts of humus compounds. Hence, this fraction also contains non-available organic P.The results are related to soil type and chemical characteristics of the sediments, and compared with data from other authors. A positive correlation was found between phosphate available to algae and NTA- and NaOH-extractable P, but the correlation with total phosphorus was higher. Moreover, algal-extractable P proved to be positively correlated with total iron and clay content and negatively with the amount of organic matter.It is concluded that the sediments in the investigated lakes show great variability and that the chemical extraction techniques cannot replace the bioassays to assess the amount of phosphorus available to algae.  相似文献   

15.
Sedimentary losses of phosphorus in some natural and artificial Iowa lakes   总被引:2,自引:2,他引:0  
Phosphorus sedimentation in four natural and four artificial Iowa lakes was measured by using sediment traps to determine if sedimentary phosphorus losses were greater in artificial lakes than in natural lakes and the limnological factors influencing phosphorus loss rates. Mean phosphorus sedimentation rates ranged from 13.3 to 218 mg · m–2 day–1. Although phosphorus sedimentation rates for the natural lakes as a group did not differ significantly from the rates for artificial lakes, there were significant differences among individual lakes. Phosphorus sedimentation rates also varied significantly during different seasons at different locations within a lake and at different depths within a location. Despite the variance, phosphorus sedimentation rates were strongly correlated with inorganic sediment concentrations and inorganic matter sedimentation rates, thus suggesting that inorganic sediments influence phosphorus sedimentation rates. When Iowa data were combined with data from published studies, mean sedimentation rates were directly correlated with mean chlorophyll a concentrations of the lakes. These data strongly suggest that sedimentation rates as measured by sediment traps are strongly influenced by the trophic status of a lake. Though sedimentation rates were higher in the more productive lakes, it is suggested that these rates represent only gross sedimentation rates rather than net sedimentation rates because of resuspension and resedimentation of bottom sediments.  相似文献   

16.
Intensity of mineralization processes in mountain lakes in NW Slovenia   总被引:2,自引:0,他引:2  
The potential and actual intensity of mineralization in sediments of fourteen mountain lakes and one subalpine lake in NW Slovenia have been measured. Potential mineralization was measured as the intensity of the electron transport system (ETS) activity of microzoobenthos and microbial communities and the actual mineralization as the oxygen consumption of respiration processes, both measured at a standard temperature of 20°C. The lakes are of different trophic levels and some exhibit seasonal anoxia. All but one are hardwater lakes. Two layers of sediment cores from the deepest point of the lakes were analysed: a surface layer and one below 15 cm. Significant differences among different lakes in their ETS activity and oxygen consumption in the surface and lower layers of sediment were observed. ETS activities and oxygen consumption rates were higher in the surface layers of all the lakes. From the three investigated deterministic factors (temperature, lake depth and total phosphorus in the water column) on sedimentary metabolism ETS activity in the surface layer correlated significantly with total phosphorus and lake depth, but oxygen consumption rate showed a significant correlation only with total phosphorus. The relationship between oxygen consumption and ETS activity was also investigated. ETS activities correlated with oxygen consumption rates according to the equation of logR = 0.421* logETS + 0.898 (r=0.82; n=30; p<0.001). The R/ETS ratio was lower at the sediment surface than in the layers deeper than 15 cm. It is concluded that ETS activity and oxygen consumption are good indicators of the intensity of the metabolic activity and mineralization in lake sediments. As the characteristics of lakes and some environmental factors influence the ETS activity and the oxygen consumption differently, the same R/ETS ratio should not be used as conversion factor in calculations for different lakes.  相似文献   

17.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

18.
Nitrite-dependent anaerobic methane oxidation (n-damo) process was reported to be mediated by “Candidatus Methylomirabilis oxyfera”, which belongs to the candidate phylum NC10. M. oxyfera-like bacteria have been detected in lake ecosystems, while their distribution, diversity and abundance in river ecosystems have not been well studied. In this study, both the 16S rRNA and the pmoA molecular biomarkers confirmed the presence of diverse NC10 phylum bacteria related to M. oxyfera in a river ecosystem—the Qiantang River, Zhejiang Province (China). Phylogenetic analysis of 16S rRNA genes demonstrated that the recovered M. oxyfera-like sequences could be grouped into several distinct clusters that exhibited 89.8 % to 98.9 % identity to the M. oxyfera 16S rRNA gene. Similarly, several different clusters of pmoA gene sequences were observed, and these clusters displayed 85.1–95.4 % sequence identity to the pmoA gene of M. oxyfera. Quantitative PCR showed that the abundance of M. oxyfera-like bacteria varied from 1.32?±?0.16?×?106 to 1.03?±?0.12?×?107 copies g (dry weight)?1. Correlation analysis demonstrated that the total inorganic nitrogen content, the ammonium content and the organic content of the sediment were important factors affecting the distribution of M. oxyfera-like bacterial groups in the examined sediments. This study demonstrated the distribution of diverse M. oxyfera-like bacteria and their correlation with environmental factors in Qiantang River sediments.  相似文献   

19.
Methane emissions from aquatic environments depend on methane formation (MF) and methane oxidation (MO) rates. One important question is to what extent increased temperatures will affect the balance between MF and MO. We measured potential MF and MO rates simultaneously at 4, 10, 20 and 30°C in sediment from eight different lakes representing typical boreal and northern temperate lake types. Potential MF rates ranged between 0.002 and 3.99 μmol CH4 gd.w. ?1 day?1, potential MO rates ranged from 0.01 to 0.39 CH4 gd.w. ?1 day?1. The potential MF rates were sensitive to temperature and increased 10 to 100 fold over the temperature interval studied. MF also differed between lakes and was correlated to sediment water content, percent of organic material and C:N ratio. Potential MO did not depend on temperature or sediment characteristics but was instead well explained by MF rates at the in situ temperature. It implies that elevated temperatures will enhance MF rates which may cause increased methane release from sediments until MO increases as well, as a response to higher methane levels.  相似文献   

20.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号