首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thomsen  Ingrid K. 《Plant and Soil》1993,148(2):193-201
A 5-month laboratory incubation experiment was conducted to study the immobilization-mineralization of N in soil to which dried or composted 15N labelled ryegrass (Lolium italicum L.) had been added. Cellulose was added to dried ryegrass to give a C/N ratio similar to that of composted ryegrass. Exchangeable NH4 + and NO3 , HCl-hydrolyzable N forms, microbial biomass N, NaOH-soluble and insoluble N were monitored during incubation. Dried ryegrass brought about a significant increase in total and labelled exchangeable NH4 +, while a rapid immobilization and a subsequent slow release of exchangeable NH4 + was observed in soil with composted ryegrass, together with a resistance to degradation of the labelled humic substances. Compounds synthesized during the composting process and resistant to microbial decomposition probably caused an increase in the amino-acid fraction of soil. These findings suggest that composting can reduce the risk of N losses.  相似文献   

3.
The initial benthic decomposition of Zostera marina roots was studied in a controlled flow-through chamber experiment for 23 days. Sediment chambers without added roots served as controls. The inflowing and outflowing artificial seawater (ASW) was analyzed for O2, ΣCO2, urea-N, NH4+ and NO2+NO3. Sediment profiles of Eh, particulate organic carbon (POC) and nitrogen, dissolved organic nitrogen (DON), dissolved free amino acids (DFAA), urea-N, NH4+, DFAA and urea turnover rates, sulfate reduction and counts of total anaerobic heterotrophic bacteria and different functional groups were determined. Fluxes of O2, ΣCO2, urea-N and NH4+ were stimulated during root decomposition compared to the unamended control. There were indications of stimulated bacterial growth based on counts of total anaerobic heterotrophic bacteria, anaerobic phosphatase utilizers, ammonifyers and sulfate reducers. Independent estimates of nitrogen and carbon incorporation into bacterial biomass during root decomposition indicate that a major fraction of the nitrogen for microbial growth was mobilized from the indigenous particulate organic nitrogen (PON) pool, whereas the energy source for bacterial growth was mainly obtained from the added eelgrass roots. Most of the nitrogen mineralized during root decomposition was incorporated into the bacterial biomass resulting in a low efflux of urea-N and inorganic nitrogen from the sediment to the water column.  相似文献   

4.
In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, 13C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer.  相似文献   

5.
Asparagine formation in soybean nodules   总被引:4,自引:3,他引:1       下载免费PDF全文
15NH4+ and [15N](amide)-glutamine externally supplied to detached nodules from soybean plants (cv. Tamanishiki) were incorporated within nodule tissues by vacuum infiltration and metabolized to various nitrogen compounds during 60 minutes of incubation time. In the case of 15NH4+ - feeding, the 15N abundance ratio was highest in the amide nitrogen of glutamine, followed by glutamate and the amide nitrogen of asparagine. In 15N content (micrograms excess 15N), the amide nitrogen of asparagine was most highly enriched after 60 minutes. 15NH4+ was also appreciably assimilated into alanine.  相似文献   

6.
The influence of the source of inorganic nitrogen (KNO3, (NH4)2SO4 and NH4NO3) and its concentration (5, 10, 20 and 30 mM N) on total N incorporation, as well as on N distribution into different fractions (amminiacal, amino, amide and protein) and on free amino acid levels has been determined in grape vine explants cultured in vitro.Increasing concentrations of the nitrogen source resulted in increased total N content in tissues. This effect was small for KNO3, higher for (NH4)2SO4 and maximal for NH4NO3. In addition, nitrate promoted an increase in amino-N only, whereas ammonium increased both the ammoniacal-N and the amino-N fractions. Incorporation of N into amide-N and protein-N were not affected significantly by the N sources tested.The application of increasing quantities of N enhanced the accumulation of most free amino acids, especially arginine, alanine and proline, but to different extents, depending on both the N source and its concentration. The combination of ammonium and nitrate resulted in a higher accumulation of amino acids than that observed with either one of the two forms alone.  相似文献   

7.
王铖  尹丽娟  朱瑞良 《广西植物》2015,35(4):520-525
桧叶白发藓(Leucobryum juniperoideum)在我国东南部常见,被认为是一种理想的、适用于庭院栽培的苔藓植物,而氮是植物必需的矿质元素,但过量摄入会对其造成伤害,近年来氮沉降水平的提高对苔藓植物的多样性造成了严重影响。该研究为揭示氮沉降加剧对桧叶白发藓的影响,以经6个月断茎培养的桧叶白发藓配子体为材料,用Ca(NO3)2、NH4HCO3和NH4NO3代表三种氮源,设置2、4、8、16gN·m-2 4个水平,以喷洒去离子水为对照,进行不同氮源的胁迫试验。结果表明:氮处理浓度的增加引起组织氮含量的显著提高,增加幅度分别为69.1%、25.7%和43.1%;同时引起植株坏死率显著上升,增加幅度分别为16.5%、12.5%和13.9%。三种氮源处理对株高和净重的影响有显著差异,低浓度的铵态氮(4gN·m-2)引起株高和净重的显著增加,而硝态氮和混合态氮处理差异不显著;加氮浓度的进一步提高,引起株高和净重的减低,硝态氮处理的减低幅度最大,铵态氮的降低幅度最小。三种氮源处理均引起叶绿素含量先上升后下降,但同一水平铵态氮处理的叶绿素含量要高于其它两种氮处理,而且引起叶绿素含量下降的处理浓度要高于其它两种氮源;三种氮源均引起SOD活性显著增加、可溶性蛋白和脯氨酸含量先升后降,但不同氮源间生理指标的变化不同步。这说明桧叶白发藓对硝态氮胁迫的响应比铵态氮敏感,硝态氮的增加对桧叶白发藓造成严重危害,而少量的铵态氮(4gN·m-2)则能促进桧叶白发藓的生长。研究结果可作为桧叶白发藓繁殖与生产的氮源。  相似文献   

8.
A series of computer-controlled mangrove tide-tanks planted with Kandelia candel was constructed to investigate the removal and transformation of ammonium–nitrogen under two tidal regimes: (i) 12-h wet/12-h dry (long tidal regime) and (ii) 6-h wet/6-h dry/6-h wet/6-h dry daily (short tidal regime). All tanks were irrigated with NH4Cl solution for nine water cycles (each cycle lasted for 5 weeks) at an amount of around 2.1 g NH4Cl (equivalent to 0.52 g N) per tank per cycle. During the experiment, total Kjeldahl nitrogen (TKN), inorganic nitrogen (N) (NH4+–, NO2?–, and NO3?–N) and carbon were completely removed by the mangrove system. The added NH4+–N was not detected in tidal water or accumulated in sediment. The mass balance of nitrogen showed that the discharge of ammonium-rich wastewater to mangrove wetlands enhanced microbial nitrogen transformation, particularly nitrification and denitrification processes, with 15–30% of the total nitrogen inputs returned to atmosphere as N2 gas. Growth of K. candel and macroalgae was stimulated by ammonium addition, and up to 3 and 7% of total N inputs were assimilated in plant and algal tissues, respectively. Constructed mangrove wetlands with short tidal regime had higher numbers of nitrifiers and significantly lower content of ammonium that those with long tidal regime. On the other hand, higher populations of denitrifiers and lower nitrate were found in mangroves with long tidal regime and with glucose addition.  相似文献   

9.
天山林区不同类型群落土壤氮素对冻融过程的动态响应   总被引:1,自引:0,他引:1  
季节性冻融过程对北方温带森林土壤氮素的转化与流失具有重要影响,但不同类型群落对冻融过程响应的差异尚不明确。通过在林地、草地、灌丛上设置系列监测样地,采用原位培养的方法,利用林冠遮挡形成的自然雪被厚度差异,监测分析了冻融期天山林区不同群落表层土壤(0—15 cm)的氮素动态及净氮矿化速率间的差异。结果表明:(1)不同类型群落土壤的铵态氮(NH+4-N)含量、微生物量氮(MBN)含量基本与土壤(5 cm)温度呈正相关,深冻期林地土壤铵态氮含量低于其他群落类型而硝态氮含量高于其他群落类型;(2)硝态氮(NO-3-N)为天山林区季节性冻融期间土壤矿质氮的主体,占比达78.4%。灌丛土壤硝态氮流失风险较大,融化末期较融化初期灌丛土壤硝态氮含量下降了64.6%;(3)冻融时期对整体氮素矿化速率影响显著,群落类型对氨化速率影响显著;(4)天山林区土壤氮素在冻结期主要以氮固持为主。通过揭示不同类型群落土壤氮素对冻融格局的响应,能够助益于对北方林区冬季土壤氮素循环的认识。  相似文献   

10.
The metabolism of allantoin by immature cotyledons of soybean (Glycine max L. cv Elf) grown in culture was investigated using solid state 13C and 15N nuclear magnetic resonance. All of the nitrogens of allantoin were incorporated into protein in a manner similar to that of each other and to the amide nitrogen of glutamine. The C-2 of allantoin was not incorporated into cellular material; presumably it was lost as CO2. About 50% of the C-5 of allantoin was incorporated into cellular material as a methylene carbon; the other 50% was presumably also lost as CO2. The 13C-15N bonds of [5-13C;1-15N] and [2-13C;1,3-15N]allantoin were broken prior to the incorporation of the nitrogens into protein. These data are consistent with allantoin's degradation to two molecules of urea and one two-carbon fragment. Cotyledons grown on allantoin as a source of nitrogen accumulated 21% of the nitrogen of cotyledons grown on glutamine. Only 50% of the nitrogen of the degraded allantoin was incorporated into the cotyledon as organic nitrogen; the other 50% was recovered as NH4+ in the media in which the cotyledons had been grown. The latter results suggests that the lower accumulation of nitrogen by cotyledons grown on allantoin was in part due to failure to assimilate NH4+ produced from allantoin. The seed coats had a higher activity of glutamine synthetase and a higher rate of allantoin degradation than cotyledons indicating that seed coats play an important role in the assimilation and degradation of allantoin.  相似文献   

11.
Mediterranean climates predispose aquatic systems to both flood and drought periods, therefore, stream sediments may be exposed to desiccation periods. Changes in oxygen concentrations and sediment water content influence the biotic processes implicated in nitrogen dynamics. The objectives of this study were to identify (1) the changes of inorganic nitrogen in stream sediments during the transition from wet to dry conditions, and (2) the underlying processes in N dynamics and its regulation. Extractable sediment NO3 -N and NH4 +-N, organic matter and extractable organic carbon content were assessed during natural desiccation in microcosms with sediments from an intermittent Mediterranean stream. In agreement with our initial hypothesis, our results showed how the NO3 -N content of the sediment was enhanced during the first 10 days of sediment drying, whereas NH4 +-N was lost by 14 days post-drying. During the first 10 days, sediment desiccation seemed to stimulate the net N-mineralization and net nitrification from sediments. Afterwards, the extractable NO3 -N concentration sharply dropped, which may be attributed to lower ammonium-oxidation rates as ammonium and organic matter are depleted, and to an increase in NO3 -N consumption by microbial populations. Denitrification was inhibited, with a significant decrease as % water-filled pore space lowered. We hypothesize that the sediment inorganic N content enhanced during sediment desiccation could be released as part of the N pulse observed after sediment rewetting. However, the stream N availability after rewetting dried sediments would differ depending on desiccation period duration.  相似文献   

12.
Fungal is a physiological trail and its understanding in the assimilation with the transfer of carbon (C) cum nitrogen (N) or (C/N) to orchid-seedlings have not been determined. Labelled stable isotopes 13C and 15N were used to plan the flow of C and N between orchid plants and mycorrhizal connotations in-terms of bulk transfer for C/N. This study attends to comprehend the mechanism, supporting mycorrhizal fungi which influences on orchid-seedling growth. Determined integration and transfer of C/N from amino acids (AA), ammonium nitrate (NH4NO3) and sugar for orchid-plant may lead to understand these mechanisms. This current study tries to estimate the importance of organic compounds as a source for C/N over the inorganic-NH4NO3. Generally, after begging of germination and when it is found to be associated to the nutrient resource, organic compound enhance the biomass accumulation of two orchid species. AA significantly increase the mass of 13C assimilated by two species. With amino acids the concentration of 13C in two species was greater than with NH4NO3 and sugar. At another phase, amount of 15N content shoots was a higher value in Anacamptis laxiflora shoots assimilated substantially additional of 15N with NH4NO3 plus sugar compared with ammonium nitrate only. This study showed that two terrestrial orchids species are reliant on organic compounds as a source of carbon and nitrogen more than inorganic compounds.  相似文献   

13.
Summary The decomposition and humification of oat straw labelled with15N were followed in the soil during 80 days. The influence of NaNO3 and (NH4)2 SO4 on these processes were also investigated. It was ascertained that addition of NH4–N acted more efficiently than NO3–N on both the decomposition of straw and the mineralization of the organic nitrogen compounds of the soil. In the presence of NH4–N, straw15N predominated in humic acids, while in the presence of NO3–N it predominated in fulvic acids.The incorporation of straw15N into the humic compounds occurred in proportion to the progressing decomposition of straw. The greatest similarity in the proportions of soil-N and straw-15N in isolated fractions was ascertained after 80 days of incubation in the presence of NH4–N.  相似文献   

14.
Identifying soil microbial responses to anthropogenically driven environmental changes is critically important as concerns intensify over the potential degradation of ecosystem function. We assessed the effects of elevated atmospheric CO2 on microbial carbon (C) and nitrogen (N) cycling in Mojave Desert soils using extracellular enzyme activities (EEAs), community‐level physiological profiles (CLPPs), and gross N transformation rates. Soils were collected from unvegetated interspaces between plants and under the dominant shrub (Larrea tridentata) during the 2004–2005 growing season, an above‐average rainfall year. Because most measured variables responded strongly to soil water availability, all significant effects of soil water content were used as covariates to remove potential confounding effects of water availability on microbial responses to experimental treatment effects of cover type, CO2, and sampling date. Microbial C and N activities were lower in interspace soils compared with soils under Larrea, and responses to date and CO2 treatments were cover specific. Over the growing season, EEAs involved in cellulose (cellobiohydrolase) and orthophosphate (alkaline phosphatase) degradation decreased under ambient CO2, but increased under elevated CO2. Microbial C use and substrate use diversity in CLPPs decreased over time, and elevated CO2 positively affected both. Elevated CO2 also altered microbial C use patterns, suggesting changes in the quantity and/or quality of soil C inputs. In contrast, microbial biomass N was higher in interspace soils than soils under Larrea, and was lower in soils exposed to elevated CO2. Gross rates of NH4+ transformations increased over the growing season, and late‐season NH4+ fluxes were negatively affected by elevated CO2. Gross NO3 fluxes decreased over time, with early season interspace soils positively affected by elevated CO2. General increases in microbial activities under elevated CO2 are likely attributable to greater microbial biomass in interspace soils, and to increased microbial turnover rates and/or metabolic levels rather than pool size in soils under Larrea. Because soil water content and plant cover type dominates microbial C and N responses to CO2, the ability of desert landscapes to mitigate or intensify the impacts of global change will ultimately depend on how changes in precipitation and increasing atmospheric CO2 shift the spatial distribution of Mojave Desert plant communities.  相似文献   

15.
Estuarine Microbial Food Web Patterns in a Lake Erie Coastal Wetland   总被引:1,自引:0,他引:1  
Composition and distribution of planktonic protists were examined relative to microbial food web dynamics (growth, grazing, and nitrogen cycling rates) at the Old Woman Creek (OWC) National Estuarine Research Reserve during an episodic storm event in July 2003. More than 150 protistan taxa were identified based on morphology. Species richness and microbial biomass measured via microscopy and flow cytometry increased along a stream–lake (Lake Erie) transect and peaked at the confluence. Water column ammonium (NH4+) uptake (0.06 to 1.82 M N h–1) and regeneration (0.04 to 0.55 M N h–1) rates, measured using 15NH4+ isotope dilution, followed the same pattern. Large light/dark NH4+ uptake differences were observed in the hypereutrophic OWC interior, but not at the phosphorus-limited Lake Erie site, reflecting the microbial community structural shift from net autotrophic to net heterotrophic. Despite this shift, microbial grazers (mostly choreotrich ciliates, taxon-specific growth rates up to 2.9 d–1) controlled nanophytoplankton and bacteria at all sites by consuming 76 to 110% and 56 to 97% of their daily production, respectively, in dilution experiments. Overall, distribution patterns and dynamics of microbial communities in OWC resemble those in marine estuaries, where plankton productivity increases along the river–sea gradient and reaches its maximum at the confluence.  相似文献   

16.
Measuring nitrogen (N) transformations from organic fertilizers can help in selecting applications rates that provide sufficient soluble N to promote tree growth in short-rotation plantations. The objective of this study was to determine how organic fertilizers (papermill biosolids, liquid pig slurry) affected microbially-mediated N transformations in soils. Soil samples were collected from a hybrid poplar plantation before fertilization, 1 month after fertilizer application and at the end of the growing season. Net N mineralization and nitrification were evaluated during a 28 d laboratory incubation, while gross N transformations were assessed using a 15N isotope dilution technique. Pig slurry application increased soil ammonium (NH4-N) and nitrate (NO3-N) concentrations within 1 month, while papermill biosolids increased soil NH4-N and NO3-N concentrations at the end of the growing season. Gross N consumption rates were greater than gross N production rates. The NH4-N and NO3-N consumption rates were positively correlated with labile carbon and microbial biomass. The gross nitrification rate was 18 to 67% of the gross mineralization rate but 30% or less of the gross NH4-N consumption rate, indicating that NH4 consumption was overestimated by the isotope dilution technique. We conclude that N cycling in this hybrid poplar plantation was characterized by rapid consumption of plant-available N following N mineralization and nitrification.  相似文献   

17.
Nitrogen cycling in Louisiana Gulf Coast brackish marshes   总被引:1,自引:0,他引:1  
Nitrogen fixation and nitrogen accumulation were measured in a Louisiana Spartina patens brackish marsh. Using the acetylene reduction technique calibrated with direct 15N2 assimilation, an equivalent of 90.0 µ g N g–1 yr–1 was fixed. Fixation was greater in the summer months and in the upper portion of the soil profile. Extractable ammonium increased with depth and was negatively correlated with ethylene production. Average ammonium concentration in the sediment was 39 µg NH4 +-N g–1 sediment. Cesium-137 dating of the soil profile showed the marsh was vertically accreting at a rate of 0.60 cm yr–1. Calculations using vertical accretion rate, bulk density, and total nitrogen content of sediment indicate that the marshes are accumumating 7.2 g Nm–2 yr–1 thus serving as a major nitrogen sink. Measured nitrogen fluxes were incorporated with existing flux measurement in developing a nitrogen budget for the marsh.  相似文献   

18.
Summary Four-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) saplings planted in pots with a sand and peat mix (11) were fertilized at the rate of 200 kg N/ha of (15NH2)2CO (U-15),15NH4NO3 (A-15) and NH4 15NO3(An-15). They were placed in a shadehouse and watered regularly to maintain soil moisture at field capacity over periods of one and two years. Quantity of15N in foliage generally increased from old to current growth, irrespective of the nitrogen source. Utilization of15N fertilizers by saplings after the first and second growing seasons following fertilization was greatest with nitrate labelled ammonium nitrate AN-15, and nearly equal for urea U-15 and ammonium labelled ammonium nitrate A-15. The soil immobilized more fertilizer nitrogen-15 from U-15 and A-15 than from AN-15. Data from the present study, in which leaching losses of fertilizer were minimized, demonstrated that in terms of nitrogen uptake by the saplings the nitrate fertilizer was superior to ammonium fertilizer.  相似文献   

19.
Summary The pattern of release of ammonium and nitrate nitrogen during decomposition of glyricidia, sunflower, centrosema, calapagonium and crotolaria under aerobic and anaerobic conditions, in an alluvial soil over a period of 7 weeks was studied. Under aerobic conditions, the NH4 +–N production reached the maximum after the 4th week. Nitrate-N and total available-N increased in all cases throughout the incubation period except in sunflower. This showed a nitrification inhibitory effect and had a relatively high C/N ratio (11.0) and low total N content (2.8%). In general the increase in NH4 +–N and NO3 –N was more rapid in the early stages of incubation.Under anaerobic conditions, the production of these nutrients was considerably low. Soil organic matter mineralized faster than the added organic material which started to decompose slowly after sometime. Nitrate-N tend to decrease during incubation attributable to denitrification.  相似文献   

20.
Sulfate reduction and pore water solutes related to sulfur cycling and anaerobic processes (short chain fatty acids (SCFA), SO4 2–, TCO2, NH4 +, dissolved sulfides (H2S) and CH4) were examined during one year at a marine fish farm. Mineralization of fish farm waste products was rapid in this non-bioturbated, organic rich sediment. Stimulation of sulfate reduction rates (SRR) occurred primarily in the surface layers where the organic matter was deposited. Acetate was the most important (<99%) of the measured SCFA attaining high concentrations during summer months (up to 4.7 mM). The acetate profiles exhibited distinct seasonal cycles, where periods with high concentrations in the pore waters were found coincident with a high pool of particulate organic matter in the surface sediments and a low activity of the sulfate reducing bacteria (early spring and late summer). Periods with low acetate pools occurred when sulfate reduction rates were high in early summer and in winter were pools of particulate organic matter were decreasing. Methane production was observed concurrent with sulfate reduction in the microbial active surface layers in late summer. Subsurface peaks of SO4 2–, TCO2, NH4 + and H2S were evident in July and August due to rapid mineralization in these surface layers. With decreasing autumn water temperatures mineralization rates declined and subsurface peaks of these solutes disappeared. A strong relationship was found between pore water TCO2, and NH4 +. Ratios between TCO2, and NH4 + were low compared to a control site, attaining minimum values in mid-summer. This indicated rapid nitrogen mineralization of nitrogen rich labile substrates in the fish farm sediment during the entire season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号