首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Review of ammonia-oxidizing bacteria and archaea in freshwater ponds   总被引:1,自引:0,他引:1  

Aquaculture ponds are simple and unique ecosystems, which are affected intensively by human activities. In this mini-review, we focus our attention on the distribution and community diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in pond water and sediments, as well as the possible ecological mechanisms involved. Moreover, we discuss the possibility of increasing the activity of ammonia-oxidizing organisms in order to improve the water quality in aquaculture ponds. Compared with eutrophic lakes, the significantly higher ammonia concentration in pond water does not lead to significantly higher AOB levels, and the abundance of AOA is too low to quantify accurately. Similar to eutrophic lakes, high abundances of AOA and AOB are present in the surface sediments at the same time, where the oxidation of ammonia is performed mainly by AOB. AOB and AOA exhibit significant seasonal variations in aquaculture ponds, which are affected by the temperature, pH, and dissolved oxygen. The dominant AOB species are Nitrosomonas and the Nitrosospira lineage in pond environments. Nitrososphaera or members of the Nitrososphaera-like cluster dominate the AOA species in surface sediments, whereas the Nitrosopumilus cluster dominates the deeper sediments. AOB and AOA can be enriched on artificial substrates suspended in the pond water, thereby potentially improving the water quality.

  相似文献   

2.
The abundance and diversity of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in ten wastewater treatment systems (WTSs) by polymerase chain reaction (PCR), cloning, sequencing, and quantitative real-time PCR (qPCR). The ten WTSs included four full-scale municipal WTSs, three full-scale industrial WTSs, and three lab-scale WTSs. AOB were present in all the WTSs, whereas AOA were detected in nine WTSs. QPCR data showed that AOB amoA genes (4.625?×?104–9.99?×?109 copies g?1 sludge) outnumbered AOA amoA genes (<limit of detection–1.90?×?107 copies g?1 sludge) in each WTS, indicating that AOB may play an important role than AOA in ammonia oxidization in WTSs. Interestingly, it was found that AOA and AOB coexisted with anaerobic ammonia oxidation (anammox) bacteria in three anammox WTSs with relatively higher abundance. In a full-scale industrial WTS where effluent ammonia was higher than influent ammonia, both AOA and AOB showed higher abundance. The phylogenetic analysis of AOB amoA genes showed that genera Nitrosomonas was the most dominant species in the ten WTSs; Nitrosomonas europaea cluster was the dominant major cluster, followed by Nitrosomonas-like cluster and Nitrosomonas oligotropha cluster; and AOB species showed higher diversity than AOA species. AOA were found to be affiliated with two major clusters: Nitrososphaera cluster and Nitrosopumilus cluster. Nitrososphaera cluster was the most dominant species in different samples and distributed worldwide.  相似文献   

3.
Community structures of ammonia-oxidizing microorganisms were investigated using PCR primers designed to specifically target the ammonia monooxygenase α-subunit (amoA) gene in the sediment of Jinshan Lake. Relationships between the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), and physicochemical parameters were also explored. The AOA abundance decreased sharply from west to east; however, the AOB abundance changed slightly with AOB outnumbering AOA in two of the four sediment samples (JS), JS3 and JS4. The AOA abundance was significantly correlated with the NH4–N, NO3–N, and TP. No significant correlations were observed between the AOB abundance and environmental variables. AOB had a higher diversity and richness of amoA genes than AOA. Among the 76 archaeal amoA sequences retrieved, 57.89, 38.16, and 3.95 % fell within the Nitrosopumilus, Nitrososphaera, and Nitrososphaera sister clusters, respectively. The 130 bacterial amoA gene sequences obtained in this study were grouped with known AOB sequences in the Nitrosomonas and Nitrosospira genera, which occupied 72.31 % and 27.69 % of the AOB group, respectively. Compared to the other three sample sites, the AOA and AOB community compositions at JS4 showed a large difference. This work could enhance our understanding of the roles of ammonia-oxidizing microorganisms in freshwater lake environment.  相似文献   

4.
The cold springs underlain by gas hydrates on the Qinghai-Tibet Plateau (QTP) are similar to deep-sea cold seeps with respect to methane biogeochemistry. Previous studies have shown that ammonia oxidizing bacteria (AOB) and archaea (AOA) are actively present and play important roles in the carbon/nitrogen cycles in cold seeps. Studying AOA and AOB communities in the QTP cold springs will be of great importance to our understanding of carbon and nitrogen cycling dynamics related to the underlying gas hydrates on the QTP. Thus, the abundance and diversity of AOB and AOA in sediments of four cold springs underlain by gas hydrates on the QTP were determined by using quantitative polymerase chain reaction and amoA gene (encoding ammonia monooxygenase involved in ammonia oxidation) phylogenetic analysis. The results showed that the AOB and AOA amoA gene abundances were at 103–104 copies per gram of the sediments in the investigated cold springs. The AOB population consisted of Nitrosospira and Nitrosomonas in contrast with the mere presence of Nitrosospira in marine cold seeps. The AOB diversity was higher in cold springs than in cold seeps. The AOA population was mainly composed of Nitrososphaera, in contrast with the dominance of Nitrosopumilus in cold seeps. The terrestrial origin and high level of dissolved oxygen of the cold springs may be the main factors accounting for the observed differences in AOB and AOA populations between the QTP cold springs and marine cold seeps.  相似文献   

5.
All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the “heavy” DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that 13CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both 13C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.  相似文献   

6.
Ammonia-oxidizing archaea (AOA) represent an important group of ammonia-oxidizing microorganisms that are able to convert ammonia to nitrite, a function which is crucial for the removal of nitrogen from wastewater. In this study, we investigated the abundance and diversity of AOA in a full-scale wastewater treatment plant (WWTP) which used a biological aerated filter (BAF) as the main processing mode. According to the quantitative PCR results, AOA clearly outnumbered ammonia-oxidizing bacteria (AOB) during the whole process. The abundance of AOA amoA genes in the filter layer of BAF was highest with the value varied from 6.32 × 103 to 3.8 × 104 copies/ng DNA. The highest abundance of AOB amoA genes was 1.32 × 102 copies/ng DNA, recorded in the effluent of the ACTIFLO® settling tank. The ratios of AOA/AOB in the WWTP were maintained at two or three orders of magnitude. Most AOA obtained from the WWTP fell within the Nitrosopumilus cluster. The abundance of AOA and AOB was significantly correlated with ammonium nitrogen concentrations and pH value. The community structure of AOA was significantly influenced by dissolved oxygen concentrations, pH value and chemical oxygen demand.  相似文献   

7.
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) vary in their contribution to nitrification in different environments. The eastern China marginal seas (ECMS) are featured by complex river runoffs and ocean currents, forming different sediment patches. Here, via quantitative PCR and clone library analysis of the amoA genes, we showed that AOB were more abundant than AOA in ECMS sediments. The abundance, diversity and richness of AOA, but not AOB, were higher in the East China Sea (ECS) than in the Yellow Sea (YS) and Bohai Sea (BS). Nitrosopumilus (AOA) and Nitrosospira (AOB) were predominant lineages, but their abundances varied significantly between ECS, and BS and YS. This was mainly attributed to salinity and dissolved oxygen of the bottom water. The discovery of a high abundance of Nitrosophaera at estuarine sites suggested strong terrigenous influence exerted on the AOA community. In contrast, variations in ocean conditions played more important roles in structuring the AOB community, which was separated by bottom water dissolved oxygen into two groups: the south YS, and the north YS and BS. This study provides a comprehensive insight into the spatial distribution pattern of ammonia-oxidizing prokaryotes in ECMS sediments, laying a foundation for understanding their relative roles in nitrification.  相似文献   

8.
An annual investigation into the abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fresh water aquaculture ponds was performed by quantitative PCR of the amoA gene. The results showed that AOB were the main ammonia-oxidizing microorganisms in water, and significantly higher copy numbers of the AOB amoA gene were observed in the summer (Aug 2012), while no significant differences were detected among the other three seasons. AOA showed low abundances throughout the year. The predominance of AOB in aquaculture water was suggested to be related to photoinhibition. Both the AOB and AOA amoA genes in aquaculture pond sediments showed typical seasonal patterns. The maximum density of AOB was observed in the autumn (Nov 2012) and winter (Jan 2013), while the maximum density of AOA was observed in winter. The minimum densities of both AOA and AOB occurred in the summer. The concentration of the AOA amoA gene was higher than that of the AOB amoA gene in sediments by almost one order of magnitude, which indicates that AOA are the dominant ammonia-oxidizing microorganisms in the aquaculture pond sediments. Dissolved oxygen is suggested to be the key factor determining the predominance of AOA in pond sediments.  相似文献   

9.
Mangrove wetlands are an important ecosystem in tropical and subtropical regions, and the sediments may contain both oxic and anoxic zones. In this study, ammonia/ammonium-oxidizing prokaryotes (AOPs) in yellow and black sediments with vegetation and non-vegetated sediments in a mangrove wetland of subtropical Hong Kong were investigated in winter and summer. The phylogenetic diversity of anammox bacterial 16S rRNA genes and archaeal and bacterial amoA genes (encoding ammonia monooxygenase alpha-subunit) were analyzed using PCR amplification and denaturing gradient gel electrophoresis to reveal their community structures. Quantitative PCR was also used to detect their gene abundances. The results showed that seasonality had little effect, but sediment type had a noticeable influence on the community structures and abundances of anammox bacteria. For ammonia-oxidizing archaea (AOA), seasonality had a small effect on their community structures, but a significant effect on their abundances: AOA amoA genes were significantly higher in winter than in summer. In winter, the vegetated yellow sediments had lower AOA amoA genes than the other types of sediments, but in summer, the vegetated yellow sediments had higher AOA amoA genes than the other types of sediments. Sediment type had no apparent effect on AOA community structures in winter. In summer, however, the vegetated yellow sediments showed obviously different AOA community structures from the other types of sediments. For ammonia-oxidizing bacteria (AOB), seasonality had a significant effect on their community structures and abundances: AOB amoA genes in winter were apparently higher than in summer, and AOB community structures were different between winter and summer. Sediment type had little effect on AOB community structures, but had a noticeable effect on the abundances: AOB amoA genes of the vegetated yellow sediments were obviously lower than the black ones in both seasons. This study has demonstrated that seasonality and sediment type affected community structures and abundances of AOPs differently in oxic and anoxic sediments of the mangrove wetland.  相似文献   

10.
Chemoautotrophic ammonia-oxidizers and nitrite-oxidizers are responsible for a significant amount of soil nitrate production. The identity and composition of these active nitrifiers in soils under different long-term fertilization regimes remain largely under-investigated. Based on that soil nitrification potential significantly decreased in soils with chemical fertilization (CF) and increased in soils with organic fertilization (OF), a microcosm experiment with DNA stable isotope probing was further conducted to clarify the active nitrifiers. Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) were found to actively respond to urea addition in soils with OF and no fertilizer (CK), whereas only AOB were detected in soils with CF. Around 98% of active AOB were Nitrosospira cluster 3a.1 in all tested soils, and more than 90% of active AOA were Nitrososphaera subcluster 1.1 in unfertilized and organically fertilized soils. Nitrite oxidation was performed only by Nitrospira-like bacteria in all soils. The relative abundances of Nitrospira lineage I and VI were 32% and 61%, respectively, in unfertilized soils, and that of Nitrospira lineage II was 97% in fertilized soils, indicating long-term fertilization shifted the composition of active Nitrospira-like bacteria in response to urea. This finding indicates that different fertilizer regimes impact the composition of active nitrifiers, thus, impacting soil nitrification potential.  相似文献   

11.
Diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in samples of the northern South China Sea subsurface sediment were assessed by analyzing the amoA gene sequences retrieved from the samples. The microbial diversity was assessed using rarefaction and phylogenetic analyses. The deep-sea subsurface sediments harbored diverse and distinct AOA and AOB communities, but the abundance of AOA was lower than that of AOB, consistent with many other studies about bacteria and archaea in subsurface sediments. Diversity of AOA shown in the OTUs and Shannon index was correlated with the concentration of nitrite in the Pearson analysis, but no obvious relationships between the diversity or abundance of AOB and the physicochemical parameters could be identified in the present study, indicating the concentration of ammonium may not be an important factor to determine the diversity and abundance of ammonia-oxidizing prokaryotes in the subsurface sediments. Additionally, Nitrosomonas-like AOB was found to be dominant in subsurface sediments of the northern South China Sea showing a different adaption strategy comparing with some Nitrosospira-like AOB lineages. Concentration of nitrite was correlated with diversity of AOA, but no correlations between diversity and abundance of AOB and the physicochemical parameters were established in the study. Supplementary materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   

12.
With the rapid development of ammonia-synthesizing industry, the ammonia-nitrogen pollution in wetlands acting as the sink of point and diffuse pollution has been increased dramatically. Most of ammonia-nitrogen is oxidized at least once by ammonia-oxidizing prokaryotes to complete the nitrogen cycle. Current research findings have expanded the known ammonia-oxidizing prokaryotes from the domain Bacteria to Archaea. However, in the complex wetlands environment, it remains unclear whether ammonia oxidation is exclusively or predominantly linked to Archaea or Bacteria as implied by specific high abundance. In this research, the abundance and composition of Archaea and Bacteria in sediments of four kinds of wetlands with different nitrogen concentration were investigated by using quantitative real-time polymerase chain reaction, cloning, and sequencing approaches based on amoA genes. The results indicated that AOA distributed widely in wetland sediments, and the phylogenetic tree revealed that archaeal amoA functional gene sequences from wetlands sediments cluster as two major evolutionary branches: soil/sediment and sediment/water. The bacteria functionally dominated microbial ammonia oxidation in different wetlands sediments on the basis of molecule analysis, potential nitrification rate, and soil chemistry. Moreover, the factors influencing AOA and AOB abundances with environmental indicator were also analyzed, and the results addressed the copy numbers of archaeal and bacterial amoA functional gene having the higher correlation with pH and ammonia concentration. The pH had relatively great negative impact on the abundance of AOA and AOB, while ammonia concentration showed positive impact on AOB abundance only. These findings could be fundamental to improve understanding of the importance of AOB and AOA in nitrogen and other nutrients cycle in wetland ecosystems.  相似文献   

13.
The study reports diversity in nitrifying microbial enrichments from low (0·5–5‰) and high (18–35‰) saline ecosystems. Microbial community profiling of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) enrichments was analysed by sequencing 16S rRNA and was processed using Mothur pipeline. The α-diversity indices showed the richness of nitrifying bacterial consortia from the high saline environment and were clustering based on the source of the sample. AOB and NOB enrichments from both the environments showed diverse lineages of phyla distributed in both groups with 38 and 34 phyla from low saline and 53 and 40 phyla in high saline sources, respectively. At class level, α- and γ-proteobacteria were found to be more dominant in both the enrichments. AOBs and NOBs in enrichments from low saline environments were dominated by Nitrosomonadaceae, Gallionellaceae (Nitrotoga sp.) and Ectothiorhodospiraceae and Nitrospira, respectively. Though Chromatiaceae were present in both AOB and NOB enrichments, Nitrosoglobus and Nitrosococcus dominated the AOBs while NOBs were dominated by uncultured genera, whereas Rhizobiales were found in both the enrichments. AOBs and NOBs in enrichments from high saline environments were dominated by Nitrospira-like AOBs, Nitrosomonas and Nitrosococcus genera, whereas ammonia-oxidizing archaea (AOA) group included Nitrosopumilus and Nitrososphaera genera comprising and Nitrospirae, respectively. The majority of the genera obtained in both the salinities were found to be either uncultured or unclassified groups. Results of the study suggest that the AOB and NOB consortia have unique and diverse microbes in each of the enrichments, capable of functioning in aquaculture systems practised at different salinities (0–60 ppt).  相似文献   

14.
The response of soil ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities to individual environmental variables (e.g., pH, temperature, and carbon- and nitrogen-related soil nutrients) has been extensively studied, but how these environmental conditions collectively shape AOB and AOA distributions in unmanaged agricultural soils across a large latitudinal gradient remains poorly known. In this study, the AOB and AOA community structure and diversity in 26 agricultural soils collected from eastern China were investigated by using quantitative PCR and bar-coded 454 pyrosequencing of the amoA gene that encodes the alpha subunit of ammonia monooxygenase. The sampling locations span over a 17° latitude gradient and cover a range of climatic conditions. The Nitrosospira and Nitrososphaera were the dominant clusters of AOB and AOA, respectively; but the subcluster-level composition of Nitrosospira-related AOB and Nitrososphaera-related AOA varied across the latitudinal gradient. Variance partitioning analysis showed that geography and climatic conditions (e.g., mean annual temperature and precipitation), as well as carbon-/nitrogen-related soil nutrients, contributed more to the AOB and AOA community variations (∼50% in total) than soil pH (∼10% in total). These results are important in furthering our understanding of environmental conditions influencing AOB and AOA community structure across a range of environmental gradients.  相似文献   

15.
We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH4+, salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N2 in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH4+. The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients.  相似文献   

16.
So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95 % ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70?±?0.56 and 0.82?±?0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.  相似文献   

17.
Community composition and abundance of ammonia-oxidizing archaea (AOA) were investigated using ammonia monooxygenase α subunit (amoA) in sediments from the Changjiang estuary and its adjacent area in the East China Sea (ECS). Real-time quantitative polymerase chain reaction (qPCR), clone libraries and sequencing were performed to characterize the AOA community. Clone libraries analysis showed that the majority of amoA sequences fell within the Nitrosopumilus cluster. Correlation analysis showed that AOA diversity was closely related to the nitrite concentration, which was consistent with the canonical correspondence analysis (CCA) where a significant association between nitrite and AOA community composition was observed. The qPCR results were found to be significantly correlated with the environmental parameters. In the gravity cores, a significant positive correlation was found between ammonium concentrations and amoA gene copy numbers from different sediment depths at station S31. At station S33, however, ammonium concentration had a negative correlation and nitrite concentration had a positive correlation with amoA gene copy numbers. In the surface sediments, chlorophyll a concentration had a negative correlation and nitrate concentration had a positive correlation with amoA gene copy numbers. Compared amoA gene copy numbers from AOA with those from ammonia-oxidizing β-proteobacteria (β-AOB) in the same studied areas, the amoA gene copy ratio of β-AOB to AOA was negatively correlated with the phosphate concentration and dissolved oxygen concentration, but was not significantly correlated with either ammonium concentrations or salinity. Our data provided valuable information to achieve a better understanding of the potential role of ammonia oxidizers at the interface between terrestrial and marine environments.  相似文献   

18.
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) in three types of paddy soils of China before and after rice plantation were investigated by using an integrated approach including geochemistry, 454 pyrosequencing, and quantitative polymerase chain reaction (PCR). The abundances of AOA amoA gene were 1~2 orders of magnitude higher than AOB amoA gene. The types of paddy soils had important impacts on the diversities of both AOA and AOB via clay mineralogy (smectite or illite-rich) and bioavailability of ammonium. The Nitrososphaera subcluster 5 and Nitrosopumilis cluster of AOA, and Nitrosomonas subcluster 5 and Nitrosospira subcluster 3 of AOB were well adapted to soils with high ammonium concentrations. AOA and AOB community structures were different before and after rice plantation, likely due to changes of pH and ammonium fertilization. The Nitrosospira subclusters 2 and 9 were well adapted to acidic paddy soils. However, the sensitivity of AOA and AOB community structures to these factors may be complicated by other geochemical conditions. The results of this study collectively demonstrated that multiple environmental factors, such as clay mineralogy, ammonium content and total organic carbon as well as soil pH, shaped AOA and AOB community structure and abundance.  相似文献   

19.
Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. Recent research results show that ammonia-oxidizing archaea (AOA) are both abundant and diverse in a range of ecosystems. In this study, we examined the abundance and diversity of AOA and ammonia-oxidizing beta-proteobacteria (AOB) in estuarine sediments in Hong Kong for two seasons using the ammonia monooxygenase A subunit gene (amoA) as molecular biomarker. Relationships between diversity and abundance of AOA and AOB and physicochemical parameters were also explored. AOB were more diverse but less abundant than AOA. A few phylogenetically distinct amoA gene clusters were evident for both AOA and AOB from the mangrove sediment. Pearson moment correlation analysis and canonical correspondence analysis (CCA) were used to explore physicochemical parameters potentially important to AOA and AOB. Metal concentrations were proposed to contribute potentially to the distributions of AOA while total phosphorus (TP) was correlated to the distributions of AOB. Quantitative PCR estimates indicated that AOA were more abundant than AOB in all samples, but the ratio of AOA/AOB (from 1.8 to 6.3) was smaller than most other studies by one to two orders. The abundance of AOA or AOB was correlated with pH and temperature while the AOA/AOB ratio was with the concentrations of ammonium. Several physicochemical factors, rather than any single one, affect the distribution patterns suggesting that a combination of factors is involved in shaping the dynamics of AOA and AOB in the mangrove ecosystem.  相似文献   

20.
王智慧  蒋先军 《微生物学报》2021,61(7):1933-1944
【目的】揭示典型农田旱地紫色土硝化微生物的群落组成及其对pH的响应规律。【方法】针对同一母质发育但pH差异显著的3种紫色土,利用宏基因组技术深度测序研究土壤中硝化微生物丰度和群落,包括氨氧化古菌(ammonia-oxidizing archaea,AOA),氨氧化细菌(ammonia-oxidizing bacteria,AOB),亚硝酸盐氧化细菌(nitrite-oxidizingbacteria,NOB)和全程氨氧化细菌(completeammoniaoxidizer,Comammox)。【结果】土壤中硝化微生物的丰度占总微生物的2.130%–6.082%。3种紫色土中AOA、AOB和NOB的相对丰度有显著差异:酸性紫色土中AOA的相对丰度显著大于碱性紫色土,而AOB则相反;NOB的相对丰度在中性紫色土中最高。所有土样中均发现了1种全程氨氧化细菌Candidatus Nitrospira inopinata (Ca. N. inopinata),其在中性紫色土中相对丰度最高,占总微生物的0.203%。3种不同pH紫色土中AOA均以Nitrososphaera为主,NOB均以Nitrospira为主;酸性紫色土中AOB以Nitroscoccus为主,而中性和石灰性紫色土中则以Nitrosospira为主。Pearson相关性分析发现,土壤pH和铵态氮是影响硝化微生物丰度最大的两个因子。【结论】Comammox存在于3种不同pH紫色土中,且偏好中性环境;AOA、AOB和NOB群落结构和相对丰度都存在显著差异,结合相关性分析发现土壤pH和铵态氮是导致差异最重要的两个因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号