首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

The presence of two different additives during non-covalent immobilization of lipase was studied. Lipase was immobilized via hydrophobic interactions on an amorphous silica with large pore size bearing octyl groups on the surface. Polyethyleneglycol (PEG) with different molecular weights (MW: 1500, 3000 and 10,000) were added to the suspension during enzyme immobilization, in an enzyme to PEG molar ratio of 1:10, and also 1:20 in the case of PEG1500. The activity after 15 d increased from 10% (absence of PEG) to values close to 40% in samples with PEG except the catalyst immobilized in the presence of 1:10 PEG1500, which kept fully active after 15 d incubation in toluene at 70?°C. The presence of water during storage of immobilized enzymes leads to significant activity loss. Saturated solutions of salts controlling the water activity of the systems were used to reduce in a controlled fashion the moisture of the systems: CaCl2 (aw=?0.037), MgCl2 (aw=?0.328), Mg(NO3)2 (aw=?0.529), Na2PO4.12H2O (aw=?0.74) and KCl (aw=?0.84). The immobilized lipase was suspended in saturated solutions of these salts, and then filtered and incubated in desiccators in the presence of the corresponding saturated salt solutions. Catalysts suspended and incubated in KCl or only suspended in phosphate kept some 20% activity after 33 d incubation whereas the maximal stability was achieved when the catalyst was suspended in phosphate and kept in a desiccator without salt solution. This catalyst kept around 50% activity after 33 d incubation. An inversely proportional relationship can be established between the stability achieved by the enzyme and the water content of the system.  相似文献   

2.
The transfer of Tetrahymena thermophila from normosmotic solutions (~20–80 mOsm/kg H2O) to hyperosmotic solutions (> 290 mOsm/kg H2O) was investigated. During the first 24 h of transfer from proteose peptone yeast extract (PPYE) to either 10 mM HEPES or PPYE with added NaCl to give ~300 mOsm/kg H2O, most ciliates died in HEPES but survived in PPYE. Supplementing hyperosmotic HEPES or PPYE with fetal bovine serum (FBS) enhanced survival. When ciliates were transferred from PPYE to a basal medium for vertebrate cells, L‐15 (~320 mOsm/kg H2O), only a few survived the first 24 h but many survived when the starting cell density at transfer was high (100,000 cells/ml) or FBS was present. These results suggest that nutrients and/or osmolytes in either PPYE or FBS helped ciliates survive the switch to hyperosmotic solutions. FBS also stimulated T. thermophila growth in normosmotic HEPES and PPYE and in hyperosmotic L‐15. In L‐15 with 10% FBS, the ciliates proliferated for several months and could undergo phagocytosis and bacterivory. These cell culture systems and results can be used to explore how some Tetrahymena species function in hyperosmotic hosts and act as opportunistic pathogens of vertebrates.  相似文献   

3.
Heavy water (H218O) has been used to label DNA of soil microorganisms in stable isotope probing experiments, yet no measurements have been reported for the 18O content of DNA from soil incubated with heavy water. Here we present the first measurements of atom% 18O for DNA extracted from soil incubated with the addition of H218O. Four experiments were conducted to test how the atom% 18O of DNA, extracted from Ponderosa Pine forest soil incubated with heavy water, was affected by the following variables: (1) time, (2) nutrients, (3) soil moisture, and (4) atom% 18O of added H2O. In the time series experiment, the atom% 18O of DNA increased linearly (R 2 = 0.994, p < 0.01) over the first 72 h of incubation. In the nutrient addition experiment, there was a positive correlation (R 2 = 0.991, p = 0.006) between the log10 of the amount of tryptic soy broth, a complex nutrient broth, added to soil and the log10 of the atom% 18O of DNA. For the experiment where soil moisture was manipulated, the atom% 18O of DNA increased with higher soil moisture until soil moisture reached 30%, above which 18O enrichment of DNA declined as soils became more saturated. When the atom% 18O for H2O added was varied, there was a positive linear relationship between the atom% 18O of the added water and the atom% 18O of the DNA. Results indicate that quantification of 18O incorporated into DNA from H218O has potential to be used as a proxy for microbial growth in soil.  相似文献   

4.
Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite   总被引:1,自引:0,他引:1  
Nitrosomonas europaea and Nitrosovibrio sp. produced NO and N2O during nitrification of ammonium. Less then 15% of the produced NO was due to chemical decomposition of nitrite. Production of NO and especially of N2O increased when the bacteria were incubated under anaerobic conditions at decreasing flow rates of air, or at increasing cell densities. Low concentrations of chlorite (10 M) inhibited the production of NO and N2, but not of nitrite indicating that NO and N2O were not produced during the oxidative conversion of ammonium to nitrite. NO and N2O were produced during reduction of nitrite with hydrazine as electron donor in almost stoichiometric quantities indicating that reduction of nitrite was the main source of NO and N2O.  相似文献   

5.
Abstract

A protocol of protoplast isolation from Egyptian varieties of pea and bean is reported. Protoplast cultures were established from apical shoots of pea (Pisum sativum) and suspension cultures of bean (Phaseolus vulgaris). To isolate protoplasts of pea, apical shoot tissues were digested for 10 h using enzyme solution containing 1% pectinase, 0.5% cellulase, 0.5% hemicellulase, 10% mannitol and 0.1% CaCl2-2H2O. For protoplast isolation from suspension culture of bean, collected cells were incubated for 6 h in digestion solution containing 0.5% pectinase, 0.25% of each of cellulase and hemicellulase, 10% mannitol and 0.1% CaCl2-2H2O. Purified protoplasts were cultured in liquid culture medium. Microcalli were obtained after 30 days of culture. Calli colonies with a diameter of about 5 mm were developed after one month of culturing on solid B5 medium containing 2% sucrose, 2 g/l casein hydrolysate, 0.7% agar and supplemented with either 1 mg/l of each 2,4-D and kin in case of pea or 2 mg/l 2,4-D+0.5 mg/l kin in case of bean. Protoplast derived callus of pea was successfully differentiated into shoot and root, and highest frequency of shoot organogenesis was recorded on medium containing 0.5 mg/l NAA+2 mg/l BA. Protoplast derived callus of bean, on the other hand, gave rise to a high frequency of root formation when cultured on medium containing 1 mg/l NAA, but attempts to regenerate shoots from this callus was unsuccessfull.  相似文献   

6.
5,10-Dihydrophenazine (H2Phen) was formed from phenazine (Phen) by Pseudomonas cepacia IFO 15124 in growing cultures at low oxygen tensions. Effects of culture conditions on microbial reduction of Phen with this strain were investigated. Under optimized conditions, the transformation of Phen to H2Phen by this strain gave the molar conversion yield of 30%. However, H2Phen was not detected in the culture medium when the strain was incubated with Phen with sufficient aeration.  相似文献   

7.
The 1H-nmr chemical shifts and the spin–spin coupling constants of the common amino acid residues were measured in solutions of the linear tetrapeptides H-Gly-Gly-X-L -Ala-OH in D2O and H2O, the influence of X on the nmr parameters of the neighboring residues Gly 2 and Ala 4 was investigated. The titration parameters for the side chains of Asp, Glu, Lys, Tyr, and His were determined. The pKa values obtained in D2O, with the use of pH-meter readings with a combination glass electrode uncorrected for istope effects, were 0.06 pH units higher in the acidic range and 0.10 pH units higher in the basic range than the corresponding pKa values in H2O. This suggests that the present data are suitable “random-coil” 1H-nmr parameters for conformational studies of polypeptide chains in D2O and H2O solutions.  相似文献   

8.
线虫和蚯蚓对土壤微量气体排放的影响   总被引:1,自引:0,他引:1  
罗天相  李辉信  王同  胡锋 《生态学报》2008,28(3):993-999
线虫和蚯蚓是农业中广泛存在的土壤动物,由于它们与微生物的相互作用及对土壤生态系统能量传递和养分转化的影响,可能影响土壤微量气体代谢和温室气体的排放.通过在不同土壤线虫密度下接种蚯蚓的15d培养试验结果表明,土壤动物对土壤微量气体(CO2和N2O)代谢有显著促进作用.与灭线土相比,高密度线虫土壤处理与高密度线虫土壤加蚯蚓的处理导致CO2排放量分别增加了4.3倍和5.2倍,相应的N2O排放量增加了1.8倍和2.7倍.与低密度线虫土壤处理比较时,高密度线虫土壤处理导致CO2和N2O排放量分别增加了19%和21%.接种蚯蚓在高密度线虫土中较接种在低密度线虫土壤中的CO2和N2O排放量分别增加了12%和27%.5个处理中,除了低密度线虫加蚯蚓的处理和高密度线虫处理间差异不显著外,其余各处理间均达到极显著差异(P<0.01).两种气体的排放速率呈极显著正相关(R2=0.9414).高密度线虫土壤较低密度线虫土壤显著提高了土壤的DOC含量,不同线虫密度土壤中DOC显著性的差异与CO2和N2O排放密切相关(P<0.05).  相似文献   

9.
Rhodopseudomonas sphaeroides f. denitrificans grown photosynthetically with NO 3 - under anaerobic conditions accumulated NO 2 - in the culture medium. In washed cells succinate, lactate, fumarate, citrate and malate, were effective electron donors for the reduction of NO 3 - , NO 2 - and N2O to N2 gas. Nitrate reductase was inhibited by amytal and potassium thocyanate. Nitrite reductase activity was severely restricted by potassium cyanide, sodium diethyldithiocarbamate, Amytal and 2-n-heptyl-4-hydroxyquinoline-N-oxide whereas N2O reductase was inhibited by NaN3, C2H2 and KCNS. Cells incubated with either K15NO3 or K15NO2 produced 15N2O and 15N2. A stoichiometry of 2:1 was recorded for the reduction of either NO 3 - or NO 2 - to N2O and N2 and for N2O to N2 it was 1:1.Abbreviations BVH reduced benzyl viologen - MVH reduced methyl viologen - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - CCCP carbonyl cyanide-m-chlorophenyl-hydrazone - DIECA diethyl dithiocarbamate - KCN potassium cyanide  相似文献   

10.
Studies on protoplast isolation were carried out with mature pollen grains of Tulbaghia violacea Harv. (Liliaceae). Pollen grains drifted from surface sterilized crushed anthers were incubated either in a nonenzymatic solution composed of Nitsch medium and sucrose, or in the same solution supplemented with 1% cellulase Onozuka R-10 and 1% Macerozyme R-10. The process of protoplast release was studied as a function of pH and sucrose concentration of nonenzymatic and enzymatic solutions. For nonenzymatic isolation, the tested range of pH and sucrose concentration was from 3.3 to 13.1 and from 0.015 to 1.12 M (final solution osmolality from 200 to 1,300 mOs kg-1 H2O), respectively. In the former case, the release of protoplasts occurred only at nonphysiological pH (12.2 to 13.1) and could be observed after several seconds to 120 min, depending on pH and sucrose concentration of medium. Under enzymatic incubation, viable protoplasts were released more rapidly (3 to 35 min) and in more physiological conditions, the optimum being pH 5.8 and final medium osmolality 652 mOs kg-1 H2O. Speed, manner of protoplast release, number and quality of protoplasts were dependent on interactions of pH and sucrose concentration.  相似文献   

11.
Summary The anaerobic aerotolerant bacterium Zymomonas mobilis 113 produced superoxide (O 2 - ) and hydrogen peroxide (H2O2) under aerobic conditions. The main generators of H2O2 were glucose oxidase and superoxide dismutase (SOD). The O 2 - generation was probably related to minor alternative reduced nicotinamide adenine zinucleotide (NADH)-oxidation reactions in the electron transport chain. An increase in medium pO2 was observed during growth of Z. mobilis 113 in a batch culture. The maximum pO2 increase correlated with glucose oxidase and SOD activities. An decrease in medium pO2 value coincided with an increase in catalase activity in batch culture. Medium deoxygenation reduced the pO2 effect, yet the culture still responded with a pO2 increase after inoculation and addition of the feeding medium. We conclude that the apparent pO2 effects are related to changes in H2O2 concentration in the culture liquid.  相似文献   

12.
Summary Eight species of bacteria were incubated in culture media containing 10 g/ml aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), or aflatoxin G2 (AFG2). Their culture density at 20°C was determined at four and eight days (d) after inoculation. In all species of bacteria studied (Bacillus cereus, Proteus mirabilis, Erysipylothrix rusiopathie (insidiosa), Streptococcus fecalis, Staphylococcus epidermis, Klebsiella pneumoniae, Micrococcus spp., andEscherichia coli), AFB1, AFB2 and AFG2 substantially decreased culture sizes at 4 d, but not at 8 d. InB. cereus andP. mirabilis, culture sizes were increased by AFB1, AFB2, and AFG2 at 8 d post inoculation. These results indicate that AFB1, AFB2, and AFG2 suppressed initial growth of these species in vitro, while later growth in some species was either unaltered or enhanced.  相似文献   

13.

Despite its ecological importance, essential aspects of microbial N2O reduction—such as the effect of O2 availability on the N2O sink capacity of a community—remain unclear. We studied N2O vs. aerobic respiration in a chemostat culture to explore (i) the extent to which simultaneous respiration of N2O and O2 can occur, (ii) the mechanism governing the competition for N2O and O2, and (iii) how the N2O-reducing capacity of a community is affected by dynamic oxic/anoxic shifts such as those that may occur during nitrogen removal in wastewater treatment systems. Despite its prolonged growth and enrichment with N2O as the sole electron acceptor, the culture readily switched to aerobic respiration upon exposure to O2. When supplied simultaneously, N2O reduction to N2 was only detected when the O2 concentration was limiting the respiration rate. The biomass yields per electron accepted during growth on N2O are in agreement with our current knowledge of electron transport chain biochemistry in model denitrifiers like Paracoccus denitrificans. The culture’s affinity constant (KS) for O2 was found to be two orders of magnitude lower than the value for N2O, explaining the preferential use of O2 over N2O under most environmentally relevant conditions.

  相似文献   

14.
The effect of low levels of carbon dioxide (CO2) in the gas phase on the production of recombinant human erythropoietin (EPO)in CHO cells was explored. A T-flask culture in an incubator without CO2 addition showed a slow cell growth initially followed by the cessation of growth, while other cultures incubated under 0.5–5% CO2 concentrations grew normally at the same rate during the entire period of cultivation. Interestingly, the production of EPO in the culture incubated under no CO2 supply was highest among the tested cultures. The cell specific secretion rate of EPO (qEPO) of the culture under no CO2 supply was about 3 times higher than that of the culture under 5% CO2 supply. Western blot analysis and in vivo bioassay of EPO showed no apparent changes in EPO quality between the two cases of different CO2 environments (air vs. 5% CO2), suggesting robust glycosylation of EPO by CHO cells even under very reduced CO2 environment. Various combinations of the two extreme cases, with 5% CO2 supply (suitable for cell growth) and no CO2 addition (better for EPO production), were made in order to maximize the volumetric productivity of EPO secretion (PV) in CHO cells. The PV of the cultures programmed with initial incubation under 5% CO2 followed by no CO2 supply was about 2 times superior to that of the culture incubated only under no CO2 supply. The PV of the culture under no CO2 supply was slightly lower than that of culture grown under 5% CO2. However, the qEPO of the no CO2 supply case was more than 5 times higher than that of the culture under 5% CO2 supply. In conclusion, we have demonstrated that a simple programming of CO2 supply to an incubator can enhance the production of EPO in CHO cells remarkably, without any apparent change of the EPO quality. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The effect of electrolyte and non‐electrolyte solutions on the survival and on the morphology of zebrafish Danio rerio embryos was investigated. Embryos in different ontogenetic stages were incubated in electrolyte (NaCl, KCl, MgCl2 and CaCl2) and non‐electrolyte solutions [sucrose and polyvinylalcohol (PVA)] of different concentrations for 5 – 15 min. The embryos were hatched to the long‐pec stage and the effective concentrations which caused a 50% decrease in embryo development (EC50) were determined. The morphometric changes, which were caused by the test solutions, were measured. Ion channel blockers were used to see if active ion transport played a role for embryo survival. Finally, dechorionated embryos were exposed to the test solutions to get indications about the importance of chorion and perivitelline space. For 12 hours post fertilization (hpf) embryos and a 15 min exposure period, EC50 was highest for MgCl2 (1·60 mol l?1), followed by sucrose (0·73 mol l?1), NaCl (0·49 mol l?1), KCl (0·44 mol l?1), CaCl2 (0·43 mol l?1) and PVA [0·0005 mol l?1 (2·2%)]. EC50 were lower for early embryonic stages than for advanced stages for all solutions with exception of MgCl2 and sucrose. At the EC50, MgCl2 and CaCl2 solutions did not induce morphometric changes. NaCl and sucrose solutions induced reversible morphometric changes, which were compensated within 10 min. Only the EC50 of KCl and PVA solutions induced permanent morphometric changes, which could not be compensated. Incubation of embryos in electrolyte and non‐electrolyte solutions together with ouabain (blocker of Na+– K+ ATPase), HgCl3 (dose‐dependent inhibition of aquaporine channels), verapamil (inhibition of calcium and magnesium uptake) and amiloride (inhibition of sodium uptake) significantly decreased the per cent of embryos developing to the long‐pec stage in comparison to the same solutions without blockers. Ouabain and HgCl3 also induced morphometric changes. For dechorionated embryos the survival rates in water and in the different test solutions were similar to untreated embryos.  相似文献   

16.
Nitrification by soil nitrifiers may result in substantial losses of applied nitrogen through NO3 leaching and N2O emission. The biological inhibition of nitrification by crop plants or pasture species is not well known. This study was conducted to evaluate the ability of three pasture species, Brachiaria humidicola, B. decumbens and Melinis minutiflora to inhibit nitrification. Plants were grown in a growth chamber for sixty days, fertilized with (NH4)2SO4. After harvesting, the soil was incubated with (NH4)2SO4 for 24 days. Ammonium oxidizing bacteria (AOB), NH4-N levels, and N2O emission were monitored at 4 d intervals. Among the species studied, B. humidicola inhibited nitrification and maintained NH4-N in soil to a much greater extent than the other two species. This nitrification inhibition lasted for 12 days after initiation of soil incubation study (i.e. from 60 DAS when the plants were harvested). The AOB populations and N2O emission from the soil were significantly lower in the soils where B. humidicola has been grown compared to the other two species. Root exudates and soil extracts of B. humidicola suppressed AOB populations, whereas those of B. decumbens and M. minutiflora did not. The results are in consistence with the hypothesis that B. humidicola suppressed nitrification and N2O emissions through an inhibitory effect on the AOB population.  相似文献   

17.
The effect of the rapid reduction of the water activity (aw) on the extracellular protein and amylolytic activity of Aspergillus niger was studied. An aw value gradient from 0.90 to 0.99 in KCl solutions was applied for the mycelium treatment. It was found that the aw reduction considerably influenced the protein secretion. This phenomenon was dependent on the age of the treated mycelium and the range of the aw gradient. The highest protein and enzyme secretion yields were obtained at aw = 0.98 using a 72-h old mycelium. In comparison with the non-treated mycelium, the increase in the secretion amounted to about 60% for the amylolytic activity and 37% for the soluble protein, respectively. It was shown that the mycelium incubated in KCl solutions of an aw value from 0.90 to 0.99 had the ability for regeneration in fresh CZAPEK-DOX medium. The effect of the osmotic shock on the protein secretion was limited only for the treated cell population and declined in the mycelium which was regenerated after the transfer into the culture medium.  相似文献   

18.
Spraying Chinese cabbage seedlings [Brassica pekinensis (Lour.) Rupr.] with the growth retardant daminozide (succinic acid-2,2-dimethylhydrazide) reduced tipburn of the mature plants. As the concentration of daminozide increased, the reduction in tipburn damage was correlated with increased calcium content in young susceptible leaves. This effect was much more pronounced in plants that were misted once a day during the head formation period.Incubation of detached Chinese cabbage leaves for 48 h (in the dark) in solutions which contained either EDTA or EGTA caused characteristic lesions at the leaf tips. The extent of the damage was reduced by including CaCl2 in the solutions. Leaves which were incubated in a solution of EDTA+GA3 or EGTA+GA3 were severely affected, with the latter solution being the more harmful. GA3 alone did not enhance tipburn. CaCl2 greatly reduced the effect of a complex of chelating agents and GA3. Leaves derived from daminozide-treated plants which were incubated in EDTA+GA3 were less affected with tipburn lesions than leaves of control plants treated with the same solutions. When detached leaves were water-stressed for 24 h prior to incubation in these solutions, the severity of tipburn symptoms increased. The possible interactions between GA, calcium chelation and tipburn development are discussed.Contribution no. 1171-E, 1984 series, from the ARO, The Volcani Center Bet Dagan, Israel.  相似文献   

19.
The freshwater microalga Haematococcus pluvialis is one of the best microbial sources of the carotenoid astaxanthin, but this microalga shows low growth rates and low final cell densities when cultured with traditional media. A single-variable optimization strategy was applied to 18 components of the culture media in order to maximize the productivity of vegetative cells of H. pluvialis in semicontinuous culture. The steady-state cell density obtained with the optimized culture medium at a daily volume exchange of 20% was 3.77 · 105 cells ml−1, three times higher than the cell density obtained with Bold basal medium and with the initial formulation. The formulation of the optimal Haematococcus medium (OHM) is (in g l−1) KNO3 0.41, Na2HPO4 0.03, MgSO4 · 7H2O 0.246, CaCl2 · 2H2O 0.11, (in mg l−1) Fe(III)citrate · H2O 2.62, CoCl2 · 6H2O 0.011, CuSO4 · 5H2O 0.012, Cr2O3 0.075, MnCl2 · 4H2O 0.98, Na2MoO4 · 2H2O 0.12, SeO2 0.005 and (in μg l−1]) biotin 25, thiamine 17.5 and B12 15. Vanadium, iodine, boron and zinc were demonstrated to be non-essential for the growth of H. pluvialis. Higher steady-state cell densities were obtained by a three-fold increase of all nutrient concentrations but a high nitrate concentration remained in the culture medium under such conditions. The high cell productivities obtained with the new optimized medium can serve as a basis for the development of a two-stage technology for the production of astaxanthin from H. pluvialis. Received: 10 September 1999 / Received revision: 2 December 1999 / Accepted: 3 December 1999  相似文献   

20.
Transformants of Methylobacterium dichloromethanicum DM4 (DM4-2cr/pME 8220 and DM4-2cr/pME8221) and of Methylobacterium extorquens AM1 (AM1/pME8220 and AM1/pME8221) that express the dcm A gene of dichloromethane dehalogenase undergo lysis when incubated in the presence of dichloromethane and are sensitive to acidic shock. The lysis of the transformants was found to be related neither to the accumulation of Cl ions, CH2O, or HCOOH, nor to the impairment of glutathione synthesis or to the disturbance of intracellular pH homeostasis. The (exo) Klenow fragment–mediated incorporation of [-32P]dATP into the DNA of the transformants DM4-2cr/pME8220 and AM1/pME8220 was considerably greater when the transformed cells were incubated with CH2Cl2 than when they were incubated with CH3OH, indicating the occurrence of a significant increase in the total length of gaps. At the same time, the strain AM1 (which lacks dichloromethane dehalogenase) and the dichloromethane-degrading strain DM4 incubated with CH2Cl2 showed an insignificant increase in the total length of the gaps. The transformed cells are likely to lyse due to the relatively inefficient repair of DNA lesions that are induced in response to the alkylating action of S-chloromethylglutathione, an intermediate product of CH2Cl2 degradation. The data obtained suggest that the bacterial mineralization of dichloromethane requires an efficient DNA repair system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号