首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of genetic diversity among indigenous rhizobia and its symbiotic effectiveness with soybean cultivar is important for development of knowledge about rhizobial ecology. In India, little is known about the genetic resources and diversity of rhizobia nodulating soybean. Indigenous bradyrhizobia isolated from root nodules of soybean plants, collected from traditional cultivating regions of two states (Madhya Pradesh and Uttar Pradesh) of India, were screened for bacteriophage sensitivity to identify successful broad host range symbiotic effectivity. Of 172 rhizobial isolates, 91 showed sensitivities to eight lytic phages and form ten groups on the basis of sensitivity patterns. The genetic diversity of 23 isolates belonging to different phage groups was assessed along with that of strains USDA123 and USDA94 by the restriction fragment length polymorphism (RFLP) analysis of 16S rDNA, intergenic spacer (IGS) (16S–23S rDNA), and DnaK regions. RFLP analysis of 16S rDNA formed 5 groups, whereas 19 and 9 groups were revealed by IGS and the DnaK genes, respectively. The IGS regions showed many amplified polymorphic bands. Nine isolates which revealed high RFLP polymorphism in the abovementioned regions (16S rRNA, IGS, DnaK) were used for 16S rRNA sequence analyses. The results indicate that taxonomically, all isolates were related to Rhizobium etli, Bradyrhizobium spp., and Bradyrhizobium yuanmingense. The doubling time of isolates varied from 9 h (MPSR155) to 16.2 h (MPSR068) in YM broth. Five isolates which did not show cross infectivity with isolated phage strains were studied for symbiotic efficiency. All isolates showed broad host range symbiotic effectiveness forming effective nodules on Vigna mungo, Vigna radiata, Vigna unguiculata, and Cajanus cajan. The present study provides information on genetic diversity and host range symbiosis of indigenous soybean rhizobia typed by different phages.  相似文献   

2.
Cohen SD 《Microbial ecology》2006,52(3):463-469
Discula umbrinella, a fungal endophyte of oak species, colonizes and reproduces on leaves of Quercus alba and Q. rubra in forest ecosystems. Twenty-nine isolates collected from leaves of both oak species (16 from Q. alba and 13 from Q. rubra) were assayed for oak species preference and genetic variation based on primer-specific polymerase chain reactions for the intergenic spacer region (IGS) of ribosomal DNA. DNA sequencing of the polymerase chain reaction products revealed a 10-bp insertion (237–247 bp) at the 3′ end of the IGS region present in nine isolates and absent in 20 of the isolates. Phylogenetic analysis of the IGS region using the neighbor-joining method identified IGS groups (groups I–V) based on single nucleotide sequence differences. Host selectivity and geographic origin of isolates were correlated in some instances with the IGS groups. Isolates within each IGS group were further analyzed for nucleotide polymorphisms to confirm genotype identity and genotype diversity. Ten different genotypes (Va–Vj) were identified among the isolates analyzed. Genotype diversity was greatest in IGS groups I, IV, and V. Seventy percent of the genotypes (Vc, Vd, Ve, Vf, Vg,Vi, and Vj) contained isolates with single tree species preferences.  相似文献   

3.
A cultivation-based approach was employed to compare the culturable actinobacterial diversity associated with five marine sponge species (Craniella australiensis, Halichondria rugosa, Reniochalina sp., Sponge sp., and Stelletta tenuis). The phylogenetic affiliation of the actinobacterial isolates was assessed by 16S rDNA-RFLP analysis. A total of 181 actinobacterial strains were isolated using five different culture media (denoted as M1–M5). The type of medium exhibited significant effects on the number of actinobacteria recovered, with the highest number of isolates on M3 (63 isolates) and the lowest on M1 (12 isolates). The genera isolated were also different, with the recovery of three genera on M2 and M3, and only a single genus on M1. The number of actinobacteria isolated from the five sponge species was significantly different, with a count of 83, 36, 30, 17, and 15 isolates from S. tenuis, H. rugosa, Sponge sp., Reniochalina sp., and C. australiensis, respectively. M3 was the best isolation medium for recovery of actinobacteria from S. tenuis, H. rugosa, and Sponge sp., while no specific medium preference was observed for the recovery of actinobacteria from Reniochalina sp., and C. australiensis. The RFLP fingerprinting of 16S rDNA genes digested with HhaI revealed six different patterns, in which 16 representative 16S rDNAs were fully sequenced. Phylogenetic analysis indicated that 12 strains belong to the group Streptomyces, three strains belong to Pseudonocardia, and one strain belongs to Nocardia. Two strains C14 (from C. australiensis) and N13 (from Sponge sp.) have only 96.26% and 96.27% similarity to earlier published sequences, and are therefore potential candidates for new species. The highest diversity of three actinobacteria genera was obtained from Sponge sp., though the number of isolates was low. Two genera of actinobacteria, Streptomyces, and Pseudonocardia, were isolated from both S. tenuis and C. australiensis. Only the genus of Streptomyces was isolated from H. rugosa and Reniochalina sp. Sponge species have been demonstrated here to vary as sources of culturable actinobacterial diversity, and the methods for sampling such diversity presented may be useful for improved sampling of such diversity.  相似文献   

4.
The objectives of the present study were to assess the genetic diversity, phylogeny and phylogeographical relationships of available Sarcocystis neurona isolates from different localities in the United States. All 13 Sarcocystis isolates from different hosts were subjected to polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analyses using two published DNA markers (25/396 and 33/54). The 334 bp sequence of the 25/396 marker of these isolates and Besnoitia darlingi, B. bennetti, Toxoplasma gondii and Neospora caninum were sequenced and compared. Phylogenetic analysis was performed using neighbour-joining (NJ), maximum parsimony (MP) and minimum evolution (ME) methods based on the sequences of the 25/396 marker of the 13 Sarcocystis isolates obtained in this study and sequences of 10 related isolates from GenBank. Phylogenetic trees revealed a close relatedness among S. neurona isolates in the US (nucleotide sequence diversity <5.0%). US isolates formed a monophyletic group and appeared more closely related to each other than to the South American isolates, which formed a separate lineage. NJ and ME trees with Kimura 2-parameter model separated S. neurona into two separate groups: a northern US group and a Southern US group. These findings suggest a correlation between grouping of the isolates and geographical segregation and were consistent with a genetic bottleneck hypothesis during opossum colonisation of North America. These data do not support either the view of S. neurona as a single super-species or its division into multiple subspecies.  相似文献   

5.
Cultivation techniques were used to study the heterotrophic bacterial diversity in two microbial mat samples originating from the littoral zone of two continental Antarctic lakes (Forlidas Pond and Lundstr?m Lake) in the Dufek Massif (within the Pensacola Mountains group of the Transantarctic Mountains) and Shackleton Range, respectively. Nearly 800 isolates were picked after incubation on several growth media at different temperatures. They were grouped using a whole-genome fingerprinting technique, repetitive element palindromic PCR and partial 16S rRNA gene sequencing. Phylogenetic analysis of the complete 16S rRNA gene sequences of 82 representatives showed that the isolates belonged to four major phylogenetic groups: Actinobacteria, Bacteroidetes, Proteobacteria and Firmicutes. A relatively large difference between the samples was apparent. Forlidas Pond is a completely frozen water body underlain by hypersaline brine, with summer thaw forming a slightly saline littoral moat. This was reflected in the bacterial diversity with a dominance of isolates belonging to Firmicutes, whereas isolates from the freshwater Lundstr?m Lake revealed a dominance of Actinobacteria. A total of 42 different genera were recovered, including first records from Antarctica for Albidiferax, Bosea, Curvibacter, Luteimonas, Ornithinibacillus, Pseudoxanthomonas, Sphingopyxis and Spirosoma. Additionally, a considerable number of potential new species and new genera were recovered distributed over different phylogenetic groups. For several species where previously only the type strain was available in cultivation, we report additional strains. Comparison with public databases showed that overall, 72% of the phylotypes are cosmopolitan whereas 23% are currently only known from Antarctica. However, for the Bacteroidetes, the majority of the phylotypes recovered are at present known only from Antarctica and many of these represent previously unknown species.  相似文献   

6.
Bacterial diversity of reed (Phragmites australis) periphyton communities of Kelemen-szék and Nagy-Vadas (two Hungarian soda ponds) was investigated using molecular cloning and cultivation-based techniques. The majority of the 80 Kelemen-szék and 72 Nagy-Vadas bacterial isolates proved to be moderately halophilic and alkaliphilic. A great proportion of the isolates showed phosphatase and urease activity, utilized aesculin, citrate and certain biopolymers (e.g., gelatine and tween 80). Partial 16S rDNA sequence analysis of 33 Kelemen-szék and 20 Nagy-Vadas ARDRA group representatives showed Gram-positive (Nesterenkonia, Cellulomonas, Dietzia, Bacillus and Planococcus) dominance at both sampling sites. Species of the genera Acidovorax, Hydrogenophaga (β-Proteobacteria) and Flavobacterium, Sphingobacterium (Bacteroidetes) were represented only from Kelemen-szék. Altogether 16 isolates showed low sequence similarity with yet described bacteria and may represent novel taxa. Screening of the 16S rRNA gene libraries of 129 Kelemen-szék and 158 Nagy-Vadas clones resulted in 30 and 28 different ARDRA groups, respectively. Sequence analysis revealed a Gram-negative (Rheinheimera, Aquimonas, Cellvibrio, Flavobacterium and Sphingobacterium) dominated phylogenetic diversity. A high number of the clones were affiliated with uncultured bacterial clones described from diverse environmental samples.  相似文献   

7.
Alkane hydroxylases, including the integral‐membrane non‐haem iron monooxygenase (AlkB) and cytochrome P450 CYP153 family, are key enzymes in bacterial alkane oxidation. Although both genes have been detected in a number of bacteria and environments, knowledge about the diversity of these genes in marine alkane‐degrading bacteria is still limited, especially in pelagic areas. In this report, 177 bacterial isolates, comprising 43 genera, were obtained from 18 oil‐degrading consortia enriched from surface seawater samples collected from the Atlantic Ocean. Many isolates were confirmed to be the first oil‐degraders in their affiliated genera including Brachybacterium, Idiomarina, Leifsonia, Martelella, Kordiimonas, Parvibaculum and Tistrella. Using degenerate PCR primers, alkB and CYP153A P450 genes were surveyed in these bacteria. In total, 82 P450 and 52 alkB gene fragments were obtained from 80 of the isolates. These isolates mainly belonged to Alcanivorax, Bacillus, Erythrobacter, Martelella, Parvibaculum and Salinisphaera, some of which were reported, for the first time, to encode alkane hydroxylases. Phylogenetic analysis showed that both genes were quite diverse and formed several clusters, most of which were generated from various Alcanivorax bacteria. Noticeably, some sequences, such as those from the Salinisphaera genus, were grouped into a distantly related novel cluster. Inspection of the linkage between gene and host revealed that alkB and P450 tend to coexist in Alcanivorax and Salinisphaera, while in all isolates of Parvibaculum, only P450 genes were found, but of multiple homologues. Multiple homologues of alkB mostly cooccurred in Alcanivorax isolates. Conversely, distantly related isolates contained similar or even identical sequences. In summary, various oil‐degrading bacteria, which harboured diverse P450 and alkB genes, were found in the surface water of Atlantic Ocean. Our results help to show the diversity of P450 and alkB genes in prokaryotes, and to portray the geographic distribution of oil‐degrading bacteria in marine environments.  相似文献   

8.
9.
Nine root-nodulating bacterial isolates were obtained from the leguminous shrubs Spartium junceum, Adenocarpus hispanicus, Cytisus purgans, Cytisus laburnuum, Retama sphaerocarpa and Colutea arborescens in areas of Central Spain. A poliphasic approach analyzing phenotypic, symbiotic and genetic properties was used to study their diversity and characterize them in relation to Mediterranean conditions. Stress tolerance assays revealed marked variations in salinity, extreme pH and cadmium tolerance compared with reference strains, with the majority showing salinity, alkalinity and Cd tolerance and three of them growing at acid pH. Variation within the 16S rRNA gene was examined by amplified 16S rDNA restriction analysis (ARDRA) and direct sequencing to show genetic diversity. Phylogeny confirmed the close relationship of four isolates with Bradyrhizobium canariense, three with Phylobacterium myrsinacearum, one with Rhizobium rhizogenes and another with Mesorhizobium huakuii. The cross inoculation tests revealed wide spectra of nodulation. This is the first report of P. myrsinacearum being able to nodulate these leguminous shrubs, and also the first time reported the association between B.canariense, R. rhizogenes and M. huakuii and C. laburnuum, C. purgans and C. arborescens, respectively. These results suggested that native rhizobia could be suitable candidates as biofertilizers and/or inoculants of leguminous shrubs with restoration or revegetation purposes in Mediterranean areas.  相似文献   

10.
Five thousand actinomycetes were isolated from soil samples collected from rainforests in Singapore and the generic identities of these isolates were determined by using a procedure that combined morphological, chemotaxonomic and 16S rDNA sequence-based phylogenetic analyses. Actinomycetes belonging to a total of 36 genera were identified. The most abundant isolates are members of Streptomyces, Micromonospora, Actinoplanes, Actinomadura, Nonomuria, Nocardia and Streptosporangium. By phylogenetic analysis of 16S rDNA sequences of our isolates together with those of known actinomycete species, we also evaluated the species diversity of several genera including Streptomyces, Micromonospora, Nonomuria, and Actinomadura. We found that: first, the tropical isolates are present in most clades represented by known species; and second, many tropical isolates form new clades distant from the known species, indicating the presence of unidentified taxa at both species and genus levels. Based on these results, we conclude that actinomycete diversity in the tropical rainforest is very great and should represent an excellent source for discovery of novel bioactive compounds. Received 17 March 1999/ Accepted in revised form 24 June 1999  相似文献   

11.
Aims: To evaluate the diversity and antimicrobial activity present among Pseudovibrio spp. isolated from marine sponges. Methods and Results: Seventy‐three bacterial isolates from the marine sponges Polymastia boletiformis, Axinella dissimilis and Haliclona simulans were identified as Pseudovibrio spp. using phylogenetic analysis of 16S rRNA gene sequences. Genetic diversity among these isolates was estimated using random amplification of polymorphic DNA (RAPD), and 33 RAPD types were identified among the 73 Pseudovibrio isolates. These Pseudovibrio spp. were assayed for the production of compounds with antimicrobial activity against various clinically relevant pathogens. Sixty‐two (85%) of the isolates showed activity against at least one of the pathogens tested, including Escherichia coli, Salmonella enterica serotype Typhimurium, methicillin‐resistant Staphylococcus aureus (MRSA), and Clostridium difficile. PCR screens of the Pseudovibrio isolates also revealed the presence of potential antibiotic‐producing polyketide synthase genes. Conclusions: Marine sponges harbour a diverse population of Pseudovibrio spp., the majority of which demonstrate antimicrobial activity. The identification of several different antimicrobial activity spectra suggests that the Pseudovibrio isolates may produce a suite of antimicrobial compounds. Significance and Impact of the Study: This is the first study in which an extended population of Pseudovibrio isolates from marine sponges has been analysed and establishes the little‐studied Pseudovibrio as a potentially important genus in the search for antimicrobial compounds of clinical relevance.  相似文献   

12.
About 377 guar (Cyamopsis tetragonoloba) rhizobacteria were isolated from cultivated soils of north-west India (Thar Desert) and their antifungal activity against Macrophomina phaseolina (strains of groundnut, mungbean and guar) and Fusarium oxysporum (strains of chickpea and cumin) was examined. Isolates were characterised for generic types and physiological/functional diversity. About 19% isolates representing 24% locations were inhibitory to fungal growth. Isolates 009071, 009073, 009078 and 102354 recorded maximum inhibition of pathogenic fungi on plates. Isolate 034206 gave highest %RI, 009073 showed maximum protease activity and 102354 gave highest salt tolerance. Net house and field screening results revealed that isolates 004052, 009071, 009073, 001001, 094340 and 102354 had potential for biocontrol of disease. Partial sequencing of 16S rRNA gene of 61 isolates showed that 85% of isolates belonged to genus Bacillus. Phylogenetically, however, there were four clusters in the Bacillus group comprising of Bacillus subtilis, B. cereus, B. pumilus and B. sphaericus. One isolate was identified as B. flexus, while six isolates were Bacillus spp. Four isolates were identified as Achromobacter xylosoxidans, two as Bacterium (unclassified bacteria), and one each as Ochrobactrum intermedium, Pseudomonas aeruginosa and Ralstonia sp.  相似文献   

13.
In Uttarakhand, the Organic State of India, where soils in most farming situations are deficient in nutrients and loss of crops due to soil- and seed-borne pathogens is rampant, use of native plant growth-promoting rhizobacteria (PGPRs) possessing biocontrol (BC) activities holds promise. In view of this, 600 native cold-tolerant rhizospheric bacterial isolates were collected from Uttarakhand Himalayas, of which 336 were confirmed as fluorescent Pseudomonas spp. On the basis of specific biochemical tests, these were characterized into three major groups: P. fluorescens (308 isolates), P. aeruginosa (20 isolates), and P. putida (8 isolates). Most of the isolates could grow at 8°C after 12 h of incubation, confirming their cold tolerance. In vitro biocontrol assays revealed that of 336 isolates, 74 were antagonistic to Rhizoctonia solani and 91 to Fusarium solani, the two major pathogens associated with root-rot complex in vegetables widespread in the region. Simultaneously, good HCN producers (33 isolates), siderophore producers (80 isolates), and P solubilizers (49 isolates) were also identified, which could increase the biocontrol and plant growth-promoting efficacies of the putative PGPRs. Among the different species and biovars, P. fluorescens biovar-I had the maximum number of potential isolates with BC and plant growth-promoting (PGP) activities. In French bean, under polyhouse and field conditions, five isolates (Pf-173, Pf-193, Pf-547, Pf-551, and Pf-572) showed good BC and PGP activities as up to 93% reduction in root rot was achieved. A combination of all five isolates was found to be best with respect to BC and PGP activities. In a set of 59 fluorescent Pseudomonas isolates, RAPD-PCR analysis, using three random oligodecamer primers, revealed high diversity and formed ten distinct clusters, corresponding to the host of origin (annual or perennial) or habitat (farming situations) of the isolates. The amount of diversity revealed in the set of fluorescent Pseudomonas isolates could represent enormous diversity that exists in the wild that could be exploited for improved BC and PGP activities of the PGPRs. For the first time, this study led to a large-scale characterization and repositioning of fluorescent pseudomonads from the Indian Himalayas.  相似文献   

14.
The composition of the bacterial community associated with plant roots is influenced by a variety of plant, environmental factors and also management practices. Our study aimed at detecting the root associated bacterial communities of Chinese cabbage under different fertilization regimes using cultivation dependent methods. The cultivable population was studied using plate count assay, fatty acid methyl ester (FAME) analysis and carbon substrate utilization␣(SU)using BIOLOG™ plates. Taxonomical identification of the isolates by FAME resulted in about 83% identification and they represented 9 and 14 different known bacterial genera from the rhizosphere and root interior respectively from Proteobacteria (α, β, and γ), firmicutes (actinobacteria and the Bacillus groups) and Bacteroidetes. Pseudomonas and Bacillus were associated with the plants grown under all the fertilized conditions and actinobacteria could be observed only in rhizosphere of plants grown on unfertilized plots. FAME and BIOLOG profiles of the rhizosphere and endophytic isolates could separate them with reference to fertilization. Principal component analysis (PCA) on the BIOLOG SU revealed that the isolates were metabolically dissimilar. The diversity, as revealed by the diversity indices was greater among the isolates obtained from unfertilized samples than that of fertilized ones. The isolates analyzed for different traits related to plant growth promotion revealed differences between rhizosphere and endophytic isolates and also with reference to the treatments. The highest percentage of phosphate solubilizing bacteria (PSB) and 1-aminocyclopropane-1-carboxylic acid (ACC) utilizers was recorded in chemical fertilizer treated samples, followed by the organic fertilizer treated. The results from this study indicate that fertilizers have an effect on the root associated bacterial communities of Chinese cabbage and also on their physiological characteristics related to plant growth promotion.  相似文献   

15.
The phylogenetic diversity of 31 thermophilic bacilli belonging to genera Geobacillus and Aeribacillus were investigated which were isolated from various geothermal sites of Turkey. Twenty-seven of these isolates were found to be belonged within the genus Geobacillus, whereas 4 of them were identified as Aeribacillus pallidus. The comparative 16S rRNA gene sequence analyses revealed that the A. pallidus isolates displayed sequence similarity values from 98.0 to 99.6% to their closest relative. Furthermore, Geobacillus isolates showed sequence similarity values from 88.9 to 99.8% with the reference type strains. According to the phylogenetic analysis, isolates belonging to genus Geobacillus were diverged into nine clusters and among these isolates, 19 of them were identified as strains related to G. caldoproteolyticus, G. thermodenitrificans, G. stearothermophilus, G. thermoglucosidasius and G. toebii with the most abundant 13 isolates from G. caldoproteolyticus. Four of the Geobacillus isolates were named as unidentified mix group, as they found to be genetically very homogenous like their closely related type species: G. thermoleovorans, G. vulcani, G. lituanicus, G. kaustophilus, G. caldovelox, G. caldotenax, and G. uralicus. Moreover, the sequence comparisons of E173a, E265, C161ab and A142 isolates demonstrated that they represented novel species among genus Geobacillus as they shared lower than 96.7% sequence similarity to all the described type species. The AluI-, HaeIII- and TaqI-ARDRA results were in congruence with the 16S rRNA gene sequence analyses. By ARDRA results, the isolates were able to be differentiated and clustered, the discriminative restriction fragments of these isolates and type species were determined and the novelty of E173, E265, C161ab and A142 isolates could be displayed. Some differentiating phenotypic characters and the ability of amylase, glucosidase and protease production of these bacilli were also studied and biotechnologically valuable thermostable enzyme producing isolates were introduced in order to use in further studies.  相似文献   

16.
17.
Field survey of the entomopathogenic fungus Beauveria bassiana in association with the red turpentine beetle, Dendroctonus valens, was undertaken in three pine plantations in Northern China. In total, 88 strains of B. bassiana sensu lato were isolated from the soil, bark, beetle frass, living adult and cadaver samples and soil was proved to be an important inoculum reservoir for fungal entomopathogens. Of these, 77 isolates were included for genetic diversity analysis by PCR for inter-simple sequence repeats (ISSR). Genetic diversity and population structure analysis of the isolates from three sites and five niches demonstrated high genetic diversity and heterogeneity between and/or within populations. Wright's statistics revealed a high gene flow rate (4.529) among the three populations, especially among the soil-derived isolate subpopulations. Low variation was mainly caused (94.8%) by variation among different substrates, suggesting the importance of microhabitat substrates on genetic diversity of B. bassiana. Phylogenetic variation was not associated with geographic distance.  相似文献   

18.
During ODP Leg 201 microbial communities in Eastern Equatorial Pacific Ocean and Peru Margin sediments were investigated. The sediment layers sampled extended down to 420 m below the sea floor, with estimated ages of up to 40 million years. Contamination-free anoxic slurries were inoculated into media containing different substrate combinations, all at micromolar concentration. These culture media were designed for a broad spectrum of physiological groups. A total of 162 pure cultures were isolated that could be grouped into 19 different phylotypes based on 16S rRNA gene analysis. The isolates belonged to the Alpha-, Gamma- and Deltaproteobacteria, the Firmicutes, Actinobacteria, and Bacteroidetes. The genera most frequently isolated were Bacillus (68 isolates) and Rhizobium (40 isolates). Comparison of strains with the same phylotypes by enterobacterial repetitive intergenic consensus (ERIC-PCR) analysis revealed the presence of several subgroups that did not correlate with medium, sediment depth or sampling site. The majority of the isolates, although obtained from anoxic environments and isolated under strictly anoxic conditions, turned out to be facultativly aerobic. Physiologically, the isolates were characterized as generalists, able to utilize a broad variety of electron donors with either oxygen, nitrate and in some cases manganese oxides as electron acceptors. The diversity inferred from physiological tests was even higher than that on the phylogenetic or genomic level. The outcome of the contamination tests, the isolation of close relatives of already known subsurface bacteria, the repeated finding of the same phylotype from different sites and the level of diversity present in the culture collection strongly suggest that indigenous deep-biosphere bacteria had been isolated.  相似文献   

19.
Planktonic bacteria are abundant in the Bering Sea. However, very little is known about their diversity and the roles of various bacteria in the ocean. Bacterioplankton diversity in the northern Bering Sea was investigated using a combination of molecular and cultivation-based methods. Community fingerprint analysis using polymerase chain reaction-denaturing gradient gel electrophoresis revealed an apparent difference in the bacterioplankton community composition between sampling locations in the area. The bacterial communities were characterized by two 16S rRNA gene clone libraries for surface and bottom water at shallow station NEC5 (<60 m in depth) on the continental shelf. Sequences fell into 21 major lineages of the domain Bacteria, including Proteobacteria (Alpha, Beta, Gamma, and Delta), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Planctomycetes, Verrucomicrobia, Fusobacteria, Chlamydiae, Chloroflexi, Chlorobi, Spirochaetes, Cyanobacteria (or algal chloroplasts), and candidate divisions OP8, OP11, TM6, TM7, and WS3. Significant differences were found between the two clone libraries. Actinobacteria formed the dominant bacterial lineage in both surface and bottom water, and the Alphaproteobacteria was another dominant fraction in surface water. A total of 232 heterotrophic bacterial strains were isolated and 81% showed extracellular proteolytic activity. Phylogenetic analysis revealed that the isolates fell into three bacterial groups, including the Gammaproteobacteria, Actinobacteria, and Firmicutes. The most common genus in both the bacterial isolates and protease-producing bacteria was Pseudoalteromonas. Divergence of bacterial community composition in the northern Bering Sea was mainly characterized by the dominance of Actinobacteria and reflected a bacterial community different from that currently known for marine bacterioplankton communities in other polar regions.  相似文献   

20.
Diversity of Bacterial Isolates from Commercial and Homemade Composts   总被引:1,自引:0,他引:1  
The diversity of heterotrophic bacterial isolates of three commercial and two homemade composts was studied. The commercial composts were produced from poultry litter (PC), sewage sludge (SC), municipal solid waste (MC), and homemade composts (thermal compost [DC] and vermicompost [VC]) from food wastes. The taxonomic and physiological diversity of the heterotrophic culturable bacteria was assessed using phenotypic and genotypic characterization and the analysis of the partial 16S rRNA gene sequence. Composts DC and SC presented the higher genotypic diversity, as could be inferred from the number of distinct genotypic patterns observed, 28 and 21, respectively. Gram-positive bacteria, mainly Firmicutes, were predominant in all the composts. Some organisms related with taxa rarely reported in composts, as Rhodanobacter spathiphylli, Moraxella osloensis, Lysobacter, Corynebacterium, Pigmentiphaga kullae, and new taxa were also isolated. The highest relative proportion of isolates able to degrade starch was found in compost SC (>70%), to degrade gelatine in compost DC (>70%), to degrade Tween 80 in compost PC (>90%), and to degrade poly-epsilon-caprolactones in compost DC (>80%). Compost MC presented the lowest relative proportions of isolates able to degrade starch (<25%), gelatine (<20%), and poly-epsilon-caprolactone (<40%). When compared with the others, the homemade composts presented higher relative proportions of Gram-positive isolates able to inhibit the target organisms Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, or Pseudomonas aeruginosa. In compost MC, none of the Gram-positive isolates was able to inhibit those targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号