首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mangroves are forest ecosystems located at the interface between land and sea where sediments presented a variety of contrasted environmental conditions (i.e. oxic/anoxic, non-sulfidic/sulfidic, organic matter content) providing an ideal ecosystem to study microbial communities with niche differentiation and distinct community structures. In this work, prokaryotic and fungal compositions were investigated during both wet and dry seasons in New Caledonian mangrove sediments, from the surface to deeper horizons under the two most common tree species in this region (Avicennia marina and Rhizophora stylosa), using high-throughput sequencing. Our results showed that Bacteria and Archaea communities were mainly shaped by sediment depth while the fungal community was almost evenly distributed according to sediment depth, vegetation cover and season. A detailed analysis of prokaryotic and fungal phyla showed a dominance of Ascomycota over Basidiomycota whatever the compartment, while there was a clear shift in prokaryotic composition. Some prokaryotic phyla were enriched in surface layers such as Proteobacteria, Euryarchaeota while others were mostly associated with deeper layers as Chloroflexi, Bathyarchaeota, Aminicenantes. Our results highlight the importance of considering fungal and prokaryotic counterparts for a better understanding of the microbial succession involved in plant organic matter decomposition in tropical coastal sediments.  相似文献   

2.
The diversity of sulfate-reducing prokaryotes (SRPs) and sulfur-oxidizing prokaryotes (SOPs) in freshwater lake ecosystems was investigated by cloning and sequencing of the aprA gene, which encodes for a key enzyme in dissimilatory sulfate reduction and sulfur oxidation. To understand their diversity better, the spatial distribution of aprA genes was investigated in sediments collected from six geographically distant lakes in Antarctica and Japan, including a hypersaline lake for comparison. The microbial community compositions of freshwater sediments and a hypersaline sediment showed notable differences. The clones affiliated with Desulfobacteraceae and Desulfobulbaceae were frequently detected in all freshwater lake sediments. The SOP community was mainly composed of four major phylogenetic groups. One of them formed a monophyletic cluster with a sulfur-oxidizing betaproteobacterium, Sulfuricella denitrificans, but the others were not assigned to specific genera. In addition, the AprA sequences, which were not clearly affiliated to either SRP or SOP lineages, dominated the libraries from four freshwater lake sediments. The results showed the wide distribution of some sulfur-cycle prokaryotes across geographical distances and supported the idea that metabolic flexibility is an important feature for SRP survival in low-sulfate environments.  相似文献   

3.
We report here on novel groups of Archaea in the bacterioplankton of a small boreal forest lake studied by the culture-independent analysis of the 16S rRNA genes amplified directly from lake water in combination with fluorescent in situ hybridization (FISH). Polymerase chain reaction products were cloned and 28 of the 160 Archaea clones with around 900-bp-long 16S rRNA gene inserts, were sequenced. Phylogenetic analysis, including 642 Archaea sequences, confirmed that none of the freshwater clones were closely affiliated with known cultured Archaea. Twelve Archaea sequences from lake Valkea Kotinen (VAL) belonged to Group I of uncultivated Crenarchaeota and affiliated with environmental sequences from freshwater sediments, rice roots and soil as well as with sequences from an anaerobic digestor. Eight of the Crenarchaeota VAL clones formed a tight cluster. Sixteen sequences belonged to Euryarchaeota. Four of these formed a cluster together with environmental sequences from freshwater sediments and peat bogs within the order Methanomicrobiales. Five were affiliated with sequences from marine sediments situated close to marine Group II and three formed a novel cluster VAL III distantly related to the order Thermoplasmales. The remaining four clones formed a distinct clade within a phylogenetic radiation characterized by members of the orders Methanosarcinales and Methanomicrobiales on the same branch as rice cluster I, detected recently on rice roots and in anoxic bulk soil of flooded rice microcosms. FISH with specifically designed rRNA-targeted oligonucleotide probes revealed the presence of Methanomicrobiales in the studied lake. These observations indicate a new ecological niche for many novel 'non-extreme' environmental Archaea in the pelagic water of a boreal forest lake.  相似文献   

4.
The population of ammonia-oxidizing bacteria in a temperate oligotrophic freshwater lake was analyzed by recovering 16S ribosomal DNA (rDNA) from lakewater and sediment samples taken throughout a seasonal cycle. Nitrosospira and Nitrosomonas 16S rRNA genes were amplified in a nested PCR, and the identity of the products was confirmed by oligonucleotide hybridization. Nitrosospira DNA was readily identified in all samples, and nitrosomonad DNA of the Nitrosomonas europaea-Nitrosomonas eutropha lineage was also directly detected, but during the summer months only. Phylogenetic delineation with partial (345 bp) 16S rRNA gene sequences of clones obtained from sediments confirmed the fidelity of the amplified nitrosomonad DNA and identified two sequence clusters closely related to either N. europaea or N. eutropha that were equated with the littoral and profundal sediment sites, respectively. Determination of 701-bp sequences for 16S rDNA clones representing each cluster confirmed this delineation. A PCR-restriction fragment length polymorphism (RFLP) system was developed that enabled identification of clones containing N. europaea and N. eutropha 16S rDNA sequences, including subclasses therein. It proved possible to analyze 16S rDNA amplified directly from sediment samples to determine the relative abundance of each species compared with that of the other. N. europaea and N. eutropha are very closely related, and direct evidence for their presence in lake systems is limited. The correlation of each species with a distinct spatial location in sediment is an unusual example of niche adaptation by two genotypically similar bacteria. Their occurrence and relative distribution can now be routinely monitored in relation to environmental variation by the application of PCR-RFLP analysis.  相似文献   

5.
The diversity and distribution of sulfate-reducing prokaryotes (SRP) was investigated in the Nankai Trough sediments of off-central Japan by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Bulk DNAs were extracted from five piston-cored samples (up to 4.5 m long) with 41 vertical sections, and full-length dsrABgene sequences (ca. 1.9 kb) were PCR amplified and cloned. A total of 382 dsrAB clones yielded eight phylogenetic groups with an indigenous group forming a unique dsrAB lineage. The deltaproteobacterial dsrAB genes were found in almost all sediment samples, especially in the surface layer. One unique dsrAB clone group was also widespread in the dsrAB profiles of the studied sediments, and the percentage of its clones was generally shown gradual increase with sediment depth.  相似文献   

6.
Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment depth. Lipid biomarker analyses indicated the presence of viable biomass at concentrations greater than previously reported for terrestrial subsurface environments at similar depths. Archaeal lipids were more abundant than bacterial lipids. Methane was produced from both acetate and hydrogen in enrichments inoculated with sediment from all depths evaluated, at both 10 and 35°C. Characterization of 16S rRNA genes amplified from the sediments indicated that archaeal clones could be discretely grouped within the Euryarchaeota and Crenarchaeota domains. The bacterial clones exhibited greater overall diversity than the archaeal clones, with sequences related to the Bacteroidetes, Planctomycetes, Actinobacteria, Proteobacteria, and green nonsulfur groups. The majority of the bacterial clones were either members of a novel lineage or most closely related to uncultured clones. The results of these analyses suggest that the microbial community in this environment is distinct from those in previously characterized methane hydrate-bearing sediments.  相似文献   

7.
Community structure of sediment bacteria in the Everglades freshwater marsh, fringing mangrove forest, and Florida Bay seagrass meadows were described based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) patterns of 16S rRNA gene fragments and by sequencing analysis of DGGE bands. The DGGE patterns were correlated with the environmental variables by means of canonical correspondence analysis. There was no significant trend in the Shannon–Weiner index among the sediment samples along the salinity gradient. However, cluster analysis based on DGGE patterns revealed that the bacterial community structure differed according to sites. Not only were these salinity/vegetation regions distinct but the sediment bacteria communities were consistently different along the gradient from freshwater marsh, mangrove forest, eastern-central Florida Bay, and western Florida Bay. Actinobacteria- and Bacteroidetes/Chlorobi-like DNA sequences were amplified throughout all sampling sites. More Chloroflexi and members of candidate division WS3 were found in freshwater marsh and mangrove forest sites than in seagrass sites. The appearance of candidate division OP8-like DNA sequences in mangrove sites distinguished these communities from those of freshwater marsh. The seagrass sites were characterized by reduced presence of bands belonging to Chloroflexi with increased presence of those bands related to Cyanobacteria, γ-Proteobacteria, Spirochetes, and Planctomycetes. This included the sulfate-reducing bacteria, which are prevalent in marine environments. Clearly, bacterial communities in the sediment were different along the gradient, which can be explained mainly by the differences in salinity and total phosphorus.  相似文献   

8.
Abstract

The Changjiang estuary and its adjacent East China Sea (ECS) have been considered as one of the most dynamic areas significantly contributing to elemental exchanges globally. The purpose of this study was to understand the alteration of microbial consortia at the interface of riverine and coastal environments in relation to environmental variations as well as their roles in biogeochemical cycling at this dynamic region. We sampled surface sediment samples at 4 stations from the estuary to coastal regions of the ECS. Along with collections of physicochemical parameters, we sequenced bacterial 16S rRNA genes of clones from each sample. Results showed a distinct transition of bacterial community from typical freshwater sediment phyla (e.g., Betaproteobacteria and Firmicutes) to those commonly inhabited in saline environments (e.g., Deltaproteobacteria and Gammaproteobacteria). The bacterial group at the transition zone characterized by high accumulation of organic matters and intense mixing of riverine and coastal waters was most diverse. Bacterial community structures at two ECS stations showed a similar pattern but contained different dominant taxa, shifting from Deltaproteobacteria-affiliated sulfate-reducing bacteria at the station closer to the shore to Gammaproteobacteria-affiliated nitrate-reducing bacteria further offshore. It suggested that the sedimentary bacterial community structure was related to salinity, sediment type, and substrate availability and composition.  相似文献   

9.
【目的】为了解东太平洋中国多金属结核勘探合同区西区2个站位(WBC1305和WBC1316A)深海沉积物细菌群多样性。【方法】直接提取环境样品总基因组,通过PCR和TA克隆策略构建了2个站位6个层次16S r RNA基因文库,对2个站位沉积物表层泥样中细菌多样性和群落结构特征进行分析,并通过构建系统发育树,进行系统发育学分析。【结果】2个站位6个文库共获得有效克隆533个,其中472个克隆包括α-变形菌纲、β-变形菌纲、γ-变形菌纲、δ-变形菌纲、浮霉菌门、酸杆菌门、硝化螺旋菌门、放线菌门、绿弯菌门、厚壁菌门、拟杆菌门、迷踪菌门、芽单胞菌门、Hydrogenedentes、Chlorobi和Nitrospinae16个细菌类群,而另外61个克隆为不可分类细菌类群。【结论】结果表明γ-变形菌纲和厚壁菌门分别是WBC1305和WBC1316A站位的优势种群;WBC1316A站位细菌群落结构更加丰富和复杂。  相似文献   

10.
A. Rusch  E. Gaidos 《Geobiology》2013,11(5):472-484
In the coarse‐grained carbonate sediments of coral reefs, advective porewater flow and the respiration of organic matter establish redox zones that are the scene of microbially mediated transformations of N compounds. To investigate the geobiology of N cycling in reef sediments, the benthic microbiota of Checker Reef in Kaneohe Bay, Hawaii, were surveyed for candidate nitrate reducers, ammonifying nitrite reducers, aerobic and anaerobic ammonia oxidizers (anammox) by identifying phylotypes of their key metabolic genes (napA, narG, nrfA, amoA) and ribotypes (unique RNA sequences) of anammox‐like 16S rRNA. Putative proteobacteria with the catalytic potential for nitrate reduction were identified in oxic, interfacial and anoxic habitats. The estimated richness of napA (≥202 in anoxic sediment) and narG (≥373 and ≥441 in oxic and interfacial sediment, respectively) indicates a diverse guild of nitrate reducers. The guild of nrfA hosts in interfacial reef sediment was dominated by Vibrio species. The identified members of the aerobic ammonium oxidizing guild (amoA hosts) were Crenarchaeota or close relatives of Nitrosomonadales. Putative anammox bacteria were detected in the RNA pool of Checker Reef sediment. More than half of these ribotypes show ≥90% identity with homologous sequences of Scalindua spp., while no evidence was found for members of the genera Brocadia or Kuenenia. In addition to exploring the diversity of these four nitrogen‐cycling microbial guilds in coral reef sediments, the abundances of aerobic ammonium oxidizers (amoA), nitrite oxidizers (nxrAB), ammonifying nitrite reducers (nrfA) and denitrifiers (nosZ) were estimated using real‐time PCR. Representatives of all targeted guilds were detected, suggesting that most processes of the biogeochemical N cycle can be catalyzed by the benthic microbiota of tropical coral reefs.  相似文献   

11.
Methane-forming bacteria contain unusual phytanylglycerol ether phospholipids which can be extracted from the bacteria in sediments and assayed quantitatively by high performance liquid chromatography (HPLC). In this procedure the lipids were extracted, the phospholipids recovered, hydrolyzed, purified by thin layer chromatography, derivatized and assayed by HPLC. Ether lipids were recovered quantitatively from Methanobacterium thermoautotrophicum and sediments at levels as low as 8 × 10?14 moles. In freshwater and marine sediments the flux of methane to the atmosphere and the methane levels in the pore water reflects the recovery of the phytanyl glycerol ether lipid ‘signature’. The proportion of the ether phospholipid to the total recoverable phospholipid was highest in anaerobic digester sewage sludge and deeper subsurface freshwater sediment horizons.  相似文献   

12.
Meromictic Lake Kivu is renowned for its enormous quantity of methane dissolved in the hypolimnion. The methane is primarily of biological origin, and its concentration has been increasing in the past half-century. Insight into the origin of methane production in Lake Kivu has become relevant with the recent commercial extraction of methane from the hypolimnion. This study provides the first culture-independent approach to identifying the archaeal communities present in Lake Kivu sediments at the sediment-water interface. Terminal restriction fragment length polymorphism analysis suggests considerable heterogeneity in the archaeal community composition at varying sample locations. This diversity reflects changes in the geochemical conditions in the sediment and the overlying water, which are an effect of local groundwater inflows. A more in-depth look at the archaeal community composition by clone library analysis revealed diverse phylogenies of Euryarchaeota and Crenarachaeota. Many of the sequences in the clone libraries belonged to globally distributed archaeal clades such as the rice cluster V and Lake Dagow sediment environmental clusters. Several of the determined clades were previously thought to be rare among freshwater sediment Archaea (e.g., sequences related to the SAGMEG-1 clade). Surprisingly, there was no observed relation of clones to known hydrogentrophic methanogens and less than 2 % of clones were related to acetoclastic methanogens. The local variability, diversity, and novelty of the archaeal community structure in Lake Kivu should be considered when making assumptions on the biogeochemical functioning of its sediments.  相似文献   

13.
Marine harbor sediments are frequently polluted with significant amount of polycyclic aromatic hydrocarbons (PAHs) some of which are naturally toxic, recalcitrant, mutagenic, and carcinogenic. To stimulate biodegradation of PAHs in PAH-contaminated sediments collected from near Gwangyang Bay, Korea, lactate was chosen as a supplementary carbonaceous substrate. Sediment packed into 600 ml air-tight jar was either under no treatment condition or lactate amended condition (1%, w/v). Microbial community composition was monitored by bacteria-specific and archaea-specific PCR-terminal restriction fragment length polymorphism (T-RFLP), in addition to measuring the residual PAH concentration. Results showed that lactate amendment enhanced biodegradation rate of PAHs in the sediment by 4 to 8 times, and caused a significant shift in archaebacterial community in terms of structure and diversity with time. Phylogenetic analysis of 23 archaeal clones with distinctive RFLP patterns among 288 archaeal clones indicated that majority of the archaeal members were closest to unculturable environmental rDNA clones from hydrocarbon-contaminated and/or methanogenesis-bearing sediments. Lactate amendment led to the enrichment of some clones that were most closely related to PAH-degrading Methanosarcina species. These results suggest a possible contribution of methanogenic community to PAH degradation and give us more insights on how to effectively remediate PAH-contaminated sediments.  相似文献   

14.
Pockmarks are seabed geological structures sustaining methane seepage in cold seeps. Based on RNA-derived sequences the active fraction of the archaeal community was analysed in sediments associated with the G11 pockmark, in the Nyegga region of the Norwegian Sea. The anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB) communities were studied as well. The vertical distribution of the archaeal community assessed by PCR-DGGE highlighted the presence of ANME-2 in surface sediments, and ANME-1 in deeper sediments. Enrichments of methanogens showed the presence of hydrogenotrophic methanogens of the Methanogenium genus in surface sediment layers as well. The active fraction of the archaeal community was uniquely composed of ANME-2 in the shallow sulfate-rich sediments. Functional methyl coenzyme M reductase gene libraries showed that sequences affiliated with the ANME-1 and ANME-3 groups appeared in the deeper sediments but ANME-2 dominated both surface and deeper layers. Finally, dissimilatory sulfite reductase gene libraries revealed a high SRB diversity (i.e. Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and Firmicutes) in the shallow sulfate-rich sediments. The SRB diversity was much lower in the deeper section. Overall, these results show that the microbial community in sediments associated with a pockmark harbour classical cold seep ANME and SRB communities.  相似文献   

15.
The diversity and ecology of natural communities of the uncultivated bacterium Achromatium oxaliferum were studied by use of culture-independent approaches. 16S rRNA gene sequences were PCR amplified from DNA extracted from highly purified preparations of cells that were morphologically identified as A. oxaliferum present in freshwater sediments from three locations in northern England (Rydal Water, Jenny Dam, Hell Kettles). Cloning and sequence analysis of the PCR-amplified 16S rRNA genes revealed that multiple related but divergent sequences were routinely obtained from the A. oxaliferum communities present in all the sediments examined. Whole-cell in situ hybridization with combinations of fluorescence-labelled oligonucleotide probes revealed that the divergent sequences recovered from purified A. oxaliferum cells corresponded to genetically distinct Achromatium subpopulations. Analysis of the cell size distribution of the genetically distinct subpopulations demonstrated that each was also morphologically distinct. Furthermore, there was a high degree of endemism in the Achromatium sequences recovered from different sediments; identical sequences were never recovered from different sampling locations. In addition to ecological differences that were apparent between Achromatium communities from different freshwater sediments, the distribution of different subpopulations of Achromatium in relation to sediment redox profiles indicated that the genetically and morphologically distinct organisms that coexisted in a single sediment were also ecologically distinct and were adapted to different redox conditions. This result suggests that Achromatium populations have undergone adaptive radiation and that the divergent Achromatium species occupy different niches in the sediments which they inhabit.  相似文献   

16.
The phylogenetic diversity and composition of the bacterial community in anaerobic sediments from Sapelo Island, GA, USA were examined using 16S rRNA gene libraries. The diversity of this community was comparable to that of soil, and 1,186 clones formed 817 OTUs at 99% sequence similarity. Chao1 estimators for the total richness were also high, at 3,290 OTUs at 99% sequence similarity. The program RDPquery was developed to assign clones to taxonomic groups based upon comparisons to the RDP database. While most clones could be assigned to describe phyla, fewer than 30% of the clones could be assigned to a described order. Similarly, nearly 25% of the clones were only distantly related (<90% sequence similarity) to other environmental clones, illustrating the unique composition of this community. One quarter of the clones were related to one or more undescribed orders within the γ-Proteobacteria. Other abundant groups included the δ-Proteobacteria, Bacteroidetes, and Cyanobacteria. While these phyla were abundant in other estuarine sediments, the specific members at Sapelo Island appeared to be different from those previously described in other locations, suggesting that great diversity exists between as well as within estuarine intertidal sediments. In spite of the large differences in pore water chemistry with season and depth, differences in the bacterial community were modest over the temporal and spatial scales examined and generally restricted to only certain taxa. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The distribution of sulphate-reducing bacteria (SRB) in the sediments of the Colne River estuary, Essex, UK covering different saline concentrations of sediment porewater was investigated by the use of quantitative competitive PCR. Here, we show that a new PCR primer set and a new quantitative method using PCR are useful tools for the detection and the enumeration of SRB in natural environments. A PCR primer set selective for the dissimilatory sulphite reductase gene (dsr) of SRB was designed. PCR amplification using the single set of dsr-specific primers resulted in PCR products of the expected size from all 27 SRB strains tested, including Gram-negative and positive species. Sixty clones derived from sediment DNA using the primers were sequenced and all were closely related with the predicted dsr of SRB. These results indicate that PCR using the newly designed primer set are useful for the selective detection of SRB from a natural sample. This primer set was used to estimate cell numbers by dsr selective competitive PCR using a competitor, which was about 20% shorter than the targeted region of dsr. This procedure was applied to sediment samples from the River Colne estuary, Essex, UK together with simultaneous measurement of in situ rates of sulphate reduction. High densities of SRB ranging from 0.2 ? 5.7 × 108 cells ml? 1 wet sediment were estimated by the competitive PCR assuming that all SRB have a single copy of dsr. Using these estimates cell specific sulphate reduction rates of 10? 17 to 10? 15 mol of SO4 2 ? cell? 1 day? 1 were calculated, which is within the range of, or lower than, those previously reported for pure cultures of SRB. Our results show that the newly developed competitive PCR technique targeted to dsr is a powerful tool for rapid and reproducible estimation of SRB numbers in situ and is superior to the use of culture-dependent techniques.  相似文献   

18.
Aims:  To explore the association of microbial community structure with the development of eutrophication in a large shallow freshwater lake, Lake Taihu.
Methods and Results:  The bacterial and archaeal assemblages in sediments of different lake areas were analysed using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA fragments. The bacterial DGGE profiles showed that eutrophied sites, grass-bottom areas and relatively clean sites with a eutrophic (albeit dredged) site are three respective clusters. Fifty-one dominant bacterial DGGE bands were detected and 92 corresponding clones were sequenced, most of which were affiliated with bacterial phylotypes commonly found in freshwater ecosystems. Actinobacteria were detected in the centre of the lake and not at eutrophied sites whereas the opposite was found with respect to Verrucomicrobiales . Twenty-five dominant archaeal DGGE bands were detected and 31 corresponding clones were sequenced, most of which were affiliated with freshwater archaeal phylotypes.
Conclusions:  The bacterial community structures in the sediments of different areas with similar water quality and situation tend to be similar in Taihu Lake.
Significance and Impact of the Study:  This study may expand our knowledge on the relationship between the overall microbial assemblages and the development of eutrophication in the shallow freshwater lake.  相似文献   

19.
Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH3-N/(g·24h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir.  相似文献   

20.
In the Azores, the advanced trophic state of the lakes requires a fast intervention to achieve the good ecological status prescribed by the Water Framework Directive. Despite the considerable effort made to describe the phytoplankton growing on the water column, the lack of information regarding the microbial processes in sediments is still high. Thus, for the successful implementation of internal management actions, the present work explored the relationships between geochemical profiles and dominant members of the bacterial community in sediments from eutrophic Azorean lakes. Lake Azul geochemical profiles were quite homogeneous for all parameters, while in lake Furnas the total iron profile presented a peak below the aerobic layer. For lake Verde, the concentrations of all studied parameters (20 ± 2% loss-on-ignition; 2.10 ± 0.08 mg g?1 total phosphorus; 1.31 ± 0.50 mg g?1 total nitrogen; 8.06 ± 0.13 mg g?1 total iron) in the uppermost sediment layer were approximately two times higher than the ones in sediments from other lakes, decreasing with sediment depth. The higher amounts of phosphorus and organic matter in lake Verde suggested a higher internal contribution of phosphorus to eutrophication. The dominant members of the sediment bacterial community, investigated by denaturing gradient gel electrophoresis, were mostly affiliated to Proteobacteria phylum (Alpha-, Delta-, and Gamma-subclasses), group Bacteroidetes/Chlorobi and phylum Chloroflexi. The Cyanobacteria phylum was solely detected in sediments from lake Verde and lake Furnas that presented the highest amounts of nitrogen and phosphorus both in the water column and sediments, while the other phyla were detected in sediments from the three studied lakes. In conclusion, management measurers to achieve the good ecological status until 2015 should be distinct for the different lakes taking into account the relative magnitude of the nutrient sources and the bacterial diversity in sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号