首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Böddi-szék is one of the shallow soda ponds located in the Kiskunság National Park, Hungary. In June 2008, immediately prior to drying out, an extensive algal bloom dominated by a green alga (Oocystis submarina Lagerheim) was observed in the extremely saline and alkaline water of the pond. The aim of the present study was to reveal the phylogenetic diversity of the bacterial communities inhabiting the water of Böddi-szék during the blooming event. Using two different selective media, altogether 110 aerobic bacterial strains were cultivated. According to the sequence analysis of the 16S rRNA gene, most of the strains belonged to alkaliphilic or alkalitolerant and moderately halophilic species of the genera Bacillus and Gracilibacillus (Firmicutes), Algoriphagus and Aquiflexum (Bacteroidetes), Alkalimonas and Halomonas (Gammaproteobacteria). Other strains were closely related to alkaliphilic and phototrophic purple non-sulfur bacteria of the genera Erythrobacter and Rhodobaca (Alphaproteobacteria). Analysis of the 16S rRNA gene-based clone library indicated that most of the total of 157 clone sequences affiliated with the anoxic phototrophic bacterial genera of Rhodobaca and Rhodobacter (Alphaproteobacteria), Ectothiorhodospira (Gammaproteobacteria) and Heliorestis (Firmicutes). Phylotypes related to the phylum Bacteroidetes formed the second most abundant group. Clones related to the mainly anaerobic and alkaliphilic bacterial genera of Anoxynatronum (Firmicutes), Spirochaeta (Spirochaetes) and Desulfonatronum (Deltaproteobacteria) were also abundant. Further clone sequences showed less than 95 % similarity values to cultivated species of the phyla Actinobacteria, Cyanobacteria, Deinococcus-Thermus, Fibrobacteres, Gemmatimonadetes and Lentisphaerae.  相似文献   

2.
Bacterial diversity in surface sediments from the Pacific Arctic Ocean   总被引:5,自引:0,他引:5  
In order to assess bacterial diversity within four surface sediment samples (0–5 cm) collected from the Pacific Arctic Ocean, 16S ribosomal DNA clone library analysis was performed. Near full length 16S rDNA sequences were obtained for 463 clones from four libraries and 13 distinct major lineages of Bacteria were identified (α, β, γ, δ and ε-Proteobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, Firmicutes, Planctomycetes, Spirochetes, and Verrucomicrobia). α, γ, and δ-Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria were common phylogenetic groups from all the sediments. The γ-Proteobacteria were the dominant bacterial lineage, representing near or over 50% of the clones. Over 35% of γ-Proteobacteria clones of four clone library were closely related to cultured bacterial isolates with similarity values ranging from 94 to 100%. The community composition was different among sampling sites, which potentially was related to geochemical differences.  相似文献   

3.
The community composition of total bacteria and ammonia-oxidizing bacteria in a full-scale aerated submerged biofilm reactor for drinking water pretreatment was characterized by analysis of 16S rRNA gene and the functional gene amoA, respectively. Sampling was performed in February and in July. 16S rRNA gene clone libraries revealed 13 bacterial divisions. At both sampling dates, the majority of clone sequences were related to the Alpha- and Betaproteobacteria. A minor proportion belonged to the following groups: Gammaproteobacteria, Deltaproteobacteria, Nitrospira, Firmicutes, Acidobacteria, Verrucomicrobia, Actinobacteria, Planctomycetes, Chloroflexi, Gemmatimonadetes and the Cytophaga-Flavobacterium-Bacteroides group. Some sequences related to bacteria owning high potential metabolic capacities were detected in both samples, such as Rhodobacter-like rRNA gene sequences. Surveys of cloned amoA genes from the two biofilm samples revealed ammonia-oxidizing bacterial sequences affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage. An unknown Nitrosomonas group of amoA gene sequences was also detected.  相似文献   

4.
The bacterial diversity in fecal samples from the wild pygmy loris was examined with a 16S rDNA clone library and restriction fragment length polymorphism analysis. The clones were classified as Firmicutes (43.1%), Proteobacteria (34.5%), Actinobacteria (5.2%), and Bacteroidetes (17.2%). The 58 different kinds of 16S rDNA sequences were classified into 16 genera and 20 uncultured bacteria. According to phylogenetic analysis, the major genera within the Proteobacteria was Pseudomonas, comprising 13.79% of the analyzed clone sequences. Many of the isolated rDNA sequences did not correspond to known microorganisms, but had high homology to uncultured clones found in human feces. Am. J. Primatol. 72:699–706, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Termites inhabit tropical and subtropical areas where they contribute to structure and composition of soils by efficiently degrading biomass with aid of resident gut microbiota. In this study, culture-independent molecular analysis was performed based on bacterial and archaeal 16S rRNA clone libraries to describe the gut microbial communities within Cornitermes cumulans, a South American litter-feeding termite. Our data reveal extensive bacterial diversity, mainly composed of organisms from the phyla Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and Fibrobacteres. In contrast, a low diversity of archaeal 16S rRNA sequences was found, comprising mainly members of the Crenarchaeota phylum. The diversity of archaeal methanogens was further analyzed by sequencing clones from a library for the mcrA gene, which encodes the enzyme methyl coenzyme reductase, responsible for catalyzing the last step in methane production, methane being an important greenhouse gas. The mcrA sequences were diverse and divided phylogenetically into three clades related to uncultured environmental archaea and methanogens found in different termite species. C. cumulans is a litter-feeding, mound-building termite considered a keystone species in natural ecosystems and also a pest in agriculture. Here, we describe the archaeal and bacterial communities within this termite, revealing for the first time its intriguing microbiota.  相似文献   

6.
From reed biofilm samples of Kelemen-szék (Kiskunság National Park, KNP) and Nagy-Vadas (Hortobágy National Park, HNP) altogether 260 bacterial isolates were gained after serial dilutions and plating onto different media. Following a primary selection 164 strains were investigated by "traditional" phenotypic tests and clustered by numerical analysis. Fifty-six representative strains were selected to ARDRA and 16S rDNA sequence analysis for identification. Strains were identified as members of genera Agrobacterium, Paracoccus, Halomonas, Pseudomonas, Bacillus, Planococcus and Nesterenkonia. The species diversity was also investigated by a cultivation independent method. A clone library was constructed using the community DNA isolated from the biofilm sample of Kelemen-szék. Screening of the 140 bacterial clones resulted in 45 different ARDRA groups. Sequence analysis of the representatives revealed a great phylogenetic diversity. A considerable majority of the clones was affiliated with uncultured bacterial clones (with sequence similarity between 93 and 99%) originating from diverse environmental samples (for example salt marshes, compost or wastewater treatment plants). The DNA sequences of other clones showed the presence of genera Flavobacterium, Sphingobacterium, Pseudomonas and Agrobacterium.  相似文献   

7.
《Process Biochemistry》2010,45(5):744-751
Microbial characteristics in the anaerobic tank of a full-scale produced water treatment plant capable of anaerobic hydrocarbon removal were analyzed and compared to those in the influent produced water using cultivation-independent molecular methods. Clones related to methanogens including the methylotrophic Methanomethylovorans thermophila and hydrogen- and the formate-utilizing Methanolinea tarda were in abundance in both samples, but greater numbers of M. tarda-like clones were detected in the biofilm library. Both DGGE and cloning analysis results indicated that the archaea in the biofilm were derived from the influent produced water. Bacterial communities in the influent and biofilm samples were significantly different. Epsilonproteobacteria was the dominant bacterial group in the influent while Nitrospira and Deltaproteobacteria were the predominant groups in the biofilm. Many clones related to syntrophic bacteria were found among the Deltaproteobacteria. One Deltaproteobacteria clone was related to Syntrophus, which is commonly found in methanogenic hydrocarbon-degrading consortia. A number of Deltaproteobacteria clones were assigned to the clone cluster group TA, members of which predominate in various methanogenic consortia that degrade aromatic compounds. These results suggest that a microbial community associated with methanogenic hydrocarbon degradation may have been established in the biofilm.  相似文献   

8.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

9.
Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.  相似文献   

10.
AIMS: To understand the composition and structure of microbial communities in different acid mineral bioleaching systems, and to present a more complete picture of microbially mediated acid mine drainage production. METHODS AND RESULTS: In Tong Shankou Copper Mine, China, two samples (named K1 and K2) from two different sites with bioleaching were studied. A bacterial 16S rDNA library and an archaeal 16S rDNA library of the sample from each site were constructed by 16S rDNA polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequencing. A total of 18 bacterial representative sequences and 12 archaeal representative sequences were obtained. Phylogenetic analysis indicated that 77.09% of the total bacterial clones were affiliated with Proteobacteria, and 21.22% of the total bacterial clones were closely related to Nitrospira. The rest of the bacterial clones were related to Firmicutes (1.68%). Sequences affiliated with the archaea of the Thermoplasma and Ferroplasma lineages were detected abundantly in the two samples. Unexpectedly, sequences affiliated with Sulfolobales and Methanothermus genera were also detected. CONCLUSIONS: The molecular studies appear to be consistent with the environmental conditions existing at the sites, which coincides with previous studies. High concentrations of some elements (such as copper, iron and sulfur) seemed to be the key factors resulting in the diverse distribution of typical iron-oxidizing bacteria such as Leptospirillum species and Acidithiobacillus ferrooxidans. SIGNIFICANCE AND IMPACT OF THE STUDY: Research on micro-organisms present in bioleaching systems especially archaea is not abundant. The acidophiles in the two bioleaching sites obtained from Tong Shankou Copper Mine, China, have not been reported until now. These results may expand our knowledge of the microbial diversity in the acid mineral bioleaching systems.  相似文献   

11.
The bacterial diversity of an industrial biofilter used for waste gas abatement in an animal-rendering plant was investigated. A 16S rDNA clone library was generated and 444 clones were screened using computer-aided amplified ribosomal DNA restriction analysis (ARDRA). Of the screened clones, 60.8% showed unique ARDRA patterns and the remaining 174 clones were clustered into 65 groups. Almost full-length 16S rDNA sequences of 106 clones were determined and 90.5% of the clones were affiliated with the two phyla Proteobacteria and Bacteroidetes. Alpha-, Beta-, and Gammaproteobacteria accounted for 22.1, 17.6 and 18.6% respectively. Minor portions were affiliated with the Actinobacteria (2.0%), Firmicutes and Verrucomicrobia (both 1.0%), and the Deltaproteobacteria and Thermomicrobia (each 0.5%). Only six out of the 106 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species indicating that a substantial fraction of the clone sequences were derived from unknown taxa. It was also evaluated whether a database containing 281 computer-simulated bacterial rDNA fragment patterns generated from published reference sequences can be used for identification purposes. The data analysis demonstrated that this was possible only for a small number of clones, which were closely related to described bacterial strains. Rarefaction analysis of ARDRA clusters demonstrated that the 444 clones screened are insufficient to describe the entire diversity of the clone library.  相似文献   

12.
Li D  Yang M  Li Z  Qi R  He J  Liu H 《FEMS microbiology ecology》2008,65(3):494-503
More than 100 tons of nitrobenzene and related compounds were released into Songhua River due to the explosion of an aniline production factory in November, 2005. Sediment samples were taken from the heavily polluted drainage canal, one upstream and three downstream river sites. The change of bacterial community structures along the river was studied by denaturing gradient gel electrophoresis (DGGE) and cloning and sequencing of 16S rRNA genes with five clone libraries constructed and 101 sequences acquired representing 172 clones. Both DGGE profiles and sequences of 16S rRNA genes from clone libraries demonstrated that the contaminated drainage canal and three downstream river sites were similar in that all had Betaproteobacteria , mainly grouped into Comamonadaceae , as the dominant group of bacteria, and all had Firmicutes , primarily as Clostridium spp. These results suggest that these latter two groups of bacteria may play potential roles in degradation and detoxification of nitrobenzene in the present contaminated river environments.  相似文献   

13.
Changes in soil microbial community structure and diversity may reflect environmental impact. We examined 16S rRNA gene fingerprints of bacterial communities in six agroecosystems by PCR amplification and denaturing gradient gel electrophoresis (PCR-DGGE) separation. These soils were treated with manure for over a century or different fertilizers for over 70 years. Bacterial community structure and diversity were affected by soil management practices, as evidenced by changes in the PCR-DGGE banding patterns. Bacterial community structure in the manure-treated soil was more closely related to the structure in the untreated soil than that in soils treated with inorganic fertilizers. Lime treatment had little effect on bacterial community structure. Soils treated with P and N-P had bacterial community structures more closely related to each other than to those of soils given other treatments. Among the soils tested, a significantly higher number of bacterial ribotypes and a more even distribution of the bacterial community existed in the manure-treated soil. Of the 99 clones obtained from the soil treated with manure for over a century, two (both Pseudomonas spp.) exhibited 100% similarity to sequences in the GenBank database. Two of the clones were possible chimeras. Based on similarity matching, the remaining 97 clones formed six major clusters. Fifty-six out of 97 were assigned taxonomic units which grouped into five major taxa: alpha-, beta-, and gamma-Proteobacteria (36 clones), Acidobacteria (16 clones), Bacteroidetes (2 clones), Nitrospirae (1 clone), and Firmicutes (1 clone). Forty-one clones remained unclassified. Results from this study suggested that bacterial community structure was closely related to agroecosystem management practices conducted for over 70 years.  相似文献   

14.
Karstic cave systems in Slovenia receive substantial amounts of organic input from adjacent forest and freshwater systems. These caves host microbial communities that consist of distinct small colonies differing in colour and shape. Visible to the naked eye, the colonies cover cave walls and are strewn with light-reflecting water droplets. In this study, the diversity of prokaryotes constituting these unusual microbial communities in Pajsarjeva jama cave was examined. A molecular survey based on small subunit rRNA diversity showed a high diversity within the Bacteria , while members of Archaea were not recovered. A total of eight bacterial phyla were detected. The application of various species richness estimators confirmed the diverse nature of the microbial community sample. Members of Gammaproteobacteria were most abundant in the clone libraries constructed and were followed in abundance by members of Actinobacteria and Nitrospira . In addition, members of Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria as well as Acidobacteria, Verrucomicrobia, Planctomycetes, Chloroflexi and Gemmatimonadetes were identified in clone libraries. The high number of clones most closely related to environmental 16S rRNA gene clones showed the broad spectrum of unknown and yet to be cultivated microorganisms inhabiting these cave systems.  相似文献   

15.
We used direct recovery of bacterial 16S rRNA gene sequences to investigate the bacterial diversity under Acacia tortilis subsp. raddiana, a legume tree naturally growing in the dry land part of Senegal (West Africa). Microbial DNA was purified directly from soil samples and subjected to PCR with primers specific for bacterial 16S rRNA gene sequences. 16S rDNA clone libraries were constructed from two soil samples taken at two dates, i.e. June 25th 1999 (dry season) and August 28th 1999 (rainy season) at depths of 0.25-0.50 m and at 3 m distance from the stem. The 16S rDNA of 117 clones was partially sequenced. Phylogenetic analysis of these sequences revealed extensive diversity (100 phylotypes). Comparative sequence analysis of these clones identified members of the Gammaproteobacteria (35% of the phylotypes) as the most important group, followed by the Firmicutes division with 24%. Alphaproteobacteria, Betaproteobacteria, Acidobacteria and Actinobacteria were found to be less represented. Our data suggest that bacterial communities under Acacia tortilis subsp. raddiana might differ according to the season. The relative compositions of the populations is different in both samples: the Acidobacteria are present in a much higher percentage in the dry season than in the rainy season sample while the inverse effect is observed for the members of the other groups. Within the Gammaproteobacteria we found a shift between the dry season and the rainy season from pseudomonads to Acinetobacter and Escherichia related organisms.  相似文献   

16.
This study reports the use of culture-independent and culture-dependent approaches to identify naturally occurring communities of Bacteria and Fungi fouling the surfaces of concrete structures with and without an acrylic paint coating in Georgia, USA. Genomic DNA was extracted from four different sites and PCR amplification of bacterial ribosomal RNA (16S rRNA) genes and the internal transcribed spacer (ITS) region of fungal rRNA genes was conducted. Bacterial and fungal community composition was determined by restriction analysis of amplified DNA of eight clone libraries and sequencing. Five bacterial phyla were observed, and representatives of the phylum Cyanobacteria and the classes Betaproteobacteria and Gammaproteobacteria dominated the bacterial clone libraries. The ITS region of rRNA gene sequences revealed the dominant phylotypes in the fungal clone libraries to be most closely related to Alternaria, Cladosporium, Epicoccum and Udeniomyces. The majority of these fungal genera could be cultured from the sites and successfully used to foul concrete in laboratory-based experiments. While the fungal sequences were most closely related to cultured isolates, the vast majority of bacterial sequences in the libraries were related to uncultured environmental clones. Results show phylogenetically distinct microbial populations occurring at the four sites.  相似文献   

17.
To understand the composition and structure of nitrogen-fixing bacterial communities from the Sanjiangyuan Nature Reserve on the Tibetan Plateau, the molecular diversity of nifH genes from soil obtained at six sites was examined using a PCR-based cloning approach. Six samples were collected from different regions at an altitude of 3907-4824 m above sea level, and a principal component analysis (PCA) showed that they had different biogeochemical properties. A total of 446 clones and 162 unique RFLP patterns were found. PCA of the RFLP patterns and their biogeochemical parameters showed that the content of soil organic carbon (C), total nitrogen (N) and altitude were the most important factors affecting the nitrogen-fixing bacteria community. Fifty-nine nifH clones were sequenced and their nucleotide identity varied from 64% to 98%, subdivisible into four groups in our phylogenetic tree. Some of the clone sequences were related to nifH genes belonging to four phylogenetic subdivisions (alpha, beta, gamma and delta subclasses of the Proteobacteria), while most of the clones were closely related to the genes of the uncultured bacteria. The tree also showed that the sequence distributions were not clearly related to the sample sites.  相似文献   

18.
Abstract

Most water utilities use chlorine or chloramine to produce potable water. These disinfecting agents react with water to produce residual oxidants within a water distribution system (WDS) to control bacterial growth. While monochloramine is considered more stable than chlorine, little is known about the effect it has on WDS biofilms. Community structure of 10-week old WDS biofilms exposed to disinfectants was assessed after developing model biofilms from unamended distribution water. Four biofilm types were developed on polycarbonate slides within annular reactors while receiving chlorine, chloramine, or inactivated disinfectant residual. Eubacteria were identified through 16S rDNA sequence analysis. The model WDS biofilm exposed to chloramine mainly contained Mycobacterium and Dechloromonas sequences, while a variety of alpha- and additional beta-proteobacteria dominated the 16S rDNA clone libraries in the other three biofilms. Additionally, bacterial clones distantly related to Legionella were found in one of the biofilms receiving water with inactivated chlorine residual. The biofilm reactor receiving chloraminated water required increasing amounts of disinfectant after 2 weeks to maintain chlorine residual. In contrast, free chlorine residual remained steady in the reactor that received chlorinated water. The differences in bacterial populations of potable water biofilms suggest that disinfecting agents can influence biofilm development. These results also suggest that biofilm communities in distribution systems are capable of changing in response to disinfection practices.  相似文献   

19.
Most water utilities use chlorine or chloramine to produce potable water. These disinfecting agents react with water to produce residual oxidants within a water distribution system (WDS) to control bacterial growth. While monochloramine is considered more stable than chlorine, little is known about the effect it has on WDS biofilms. Community structure of 10-week old WDS biofilms exposed to disinfectants was assessed after developing model biofilms from unamended distribution water. Four biofilm types were developed on polycarbonate slides within annular reactors while receiving chlorine, chloramine, or inactivated disinfectant residual. Eubacteria were identified through 16S rDNA sequence analysis. The model WDS biofilm exposed to chloramine mainly contained Mycobacterium and Dechloromonas sequences, while a variety of alpha- and additional beta-proteobacteria dominated the 16S rDNA clone libraries in the other three biofilms. Additionally, bacterial clones distantly related to Legionella were found in one of the biofilms receiving water with inactivated chlorine residual. The biofilm reactor receiving chloraminated water required increasing amounts of disinfectant after 2 weeks to maintain chlorine residual. In contrast, free chlorine residual remained steady in the reactor that received chlorinated water. The differences in bacterial populations of potable water biofilms suggest that disinfecting agents can influence biofilm development. These results also suggest that biofilm communities in distribution systems are capable of changing in response to disinfection practices.  相似文献   

20.
The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of -325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号