首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4?°C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC processing.  相似文献   

2.
The diversity of the microbial community was identified in two lab-scale, ideally mixed sequencing batch reactors which were run for 115 days. One of the reactors was intermittently aerated (2 h aerobically/2 h anaerobically) whereas the other was consistently aerated. The amount of biomass as dry matter, the degradation of organic carbon determined by chemical oxygen demand and nitrogen-degradation activity were followed over the operation of the two reactors and did not show significant differences between the two approaches at the end of the experiment. At this point, the composition of the microbial community was determined by a terminal restriction fragment length polymorphism approach using multiple restriction enzymes by which organisms were retrieved to the lowest taxonomic level. The microbial composition was then significantly different. The species richness was at least five-fold higher in the intermittently aerated reactor than in the permanently kept aerobic approach which is in line with the observation that ecosystem disturbances result in higher diversity.  相似文献   

3.
Identification of the functional groups of microorganisms that are predominantly in control of fluxes through, and concentrations in, microbial networks would benefit microbial ecology and environmental biotechnology: the properties of those controlling microorganisms could be studied or monitored specifically or their activity could be modulated in attempts to manipulate the behaviour of such networks. Herein we present ecological control analysis (ECA) as a versatile mathematical framework that allows for the quantification of the control of each functional group in a microbial network on its process rates and concentrations of intermediates. In contrast to current views, we show that rates of flow of matter are not always limited by a single functional group; rather flux control can be distributed over several groups. Also, control over intermediate concentrations is always shared. Because of indirect interactions, through other functional groups, the concentration of an intermediate can also be controlled by functional groups not producing or consuming it. Ecological control analysis is illustrated by a case study on the anaerobic degradation of organic matter, using experimental data obtained from the literature. During anaerobic degradation, fermenting microorganisms interact with terminal electron-accepting microorganisms (e.g. halorespirers, methanogens). The analysis indicates that flux control mainly resides with fermenting microorganisms, but can shift to the terminal electron-accepting microorganisms under less favourable redox conditions. Paradoxically, halorespiring microorganisms do not control the rate of perchloroethylene and trichloroethylene degradation even though they catalyse those processes themselves.  相似文献   

4.
Chemical and microbial degradation of the nematicides-insecticides aldicarb and ethoprop has been studied extensively in both laboratory and field studies. These studies show that temperature is the most important variable affecting the degradation rate of aldicarb and its carbamate metabolites in surface soils. Temperature and organic matter appear to be the most important variables affecting degradation rates of ethoprop in soils under normal agricultural conditions, with organic matter being inversely related to degradation, presumably due to increased binding to soil particles. Soil moisture may be important under some conditions for both compounds, with degradation reduced in low-moisture soils. The rate of degradation of aldicarb residues (aldicarb + aldicarb sulfoxide + aldicarb sulfone) does not seem to be significantly affected by depth from soil surface, except that aldicarb residues degrade more slowly in acidic, coarse sand subsoils. Degradation of ethoprop also continues in subsurface soils, although field data are limited due to its lower mobility. Both compounds degrade in groundwater. Because microbial activity decreases with depth below soil surface, chemical processes are important components of the degradation of both aldicarb residues and ethoprop. For aldicarb, transformation to carbamate oxides in surface soils is primarily microbial, while degradation to noncarbamate compounds appears to be primarily the result of soil-catalyzed hydrolysis throughout the soil profile. For ethoprop, both chemical and microbial catalyzed hydrolysis are important in surface soils, with chemical hydrolysis becoming more important with increasing depth.  相似文献   

5.
Simulation modeling has been an integral, albeit ad hoc, component of the field of aquatic microbial ecology for the past two decades. One of the most critical steps in simulation modeling is the initial formulation of a clear set of questions and goals. It is doubtful that a single generic model could be constructed to address adequately all questions of interest concerning the microbial loop because of the tremendous range in time scales that define these questions. Progress in the field of aquatic microbial ecology will benefit from an integrated research program including experimental and modeling approaches. A submodel of bacterial utilization of various qualities of organic matter that we have under construction is presented. This submodel will be a component of a larger model to evaluate the effects of quality and quantity of organic matter and inorganic nutrient inputs on estuarine food web structure and efficiency. The overall model will be general enough in its structure that it should be applicable to a wide range of questions concerning the microbial loop, with time scales ranging from hours to days.  相似文献   

6.
Bioremediation is a natural process, which relies on bacteria, fungi, and plants to degrade, break down, transform, and/or essentially remove contaminants, ensuring the conservation of the ecosystem biophysical properties. Since microorganisms are the former agents for the degradation of organic contaminants in soil, the application of organic matter (such as compost, sewage sludge, etc.), which increases microbial density and also provides nutrients and readily degradable organic matter (bioenhancement–bioaugmentation) can be considered useful to accelerate the contaminant degradation. Moreover, the organic matter addition, by means of the increase of cation exchange capacity, soil porosity and water-holding capacity, enhances the soil health and provides a medium satisfactory for microorganism activity. Plants have been also recently used in soil reclamation strategy both for their ability to uptake, transform, and store the contaminants, and to promote the degradation of organic contaminants by microbes at rhizosphere level. It is widely recognized that plant, through organic materials, nutrients and oxygen supply, produces a rich microenvironment capable of promoting microbial proliferation and activity.  相似文献   

7.
Fermentative and methanogenic bacteria have been found repeatedly as important members of microbial flora in anoxic zones of the subsurface—in pristine as well as in contaminated groundwater aquifers. These bacteria, which together with obligate proton reducers form complex methanogenic communities, are significant as decomposers of organic matter under conditions of exogenous electron acceptor depletion. Their metabolic activity has been demonstrated in laboratory microcosms derived from aquifer material, and also in the subsurface in situ. Methanogenic communities have been shown to transform numerous organic pollutants, or even to completely degrade these compounds with the production of carbon dioxide and methane. Depending on the chemical structure of the pollutant, such a compound can be used as an electron donor and a carbon/energy source for fermentative microorganisms (which is typically the case with highly reduced compounds); alternatively, a highly oxidized pollutant can be used as a potential electron acceptor or electron sink. This review addresses fermentative/methanogenic degradation of chlorinated and nonchlorinated aromatic hydrocarbons and phenols by subsurface microorganisms; for comparison, it briefly relates also other types of anaerobic transformations (under sulfate‐reducing, iron‐reducing, and denitrifying conditions). Furthermore, it outlines transformation pathways, those that are proposed as well as those that are already partially proved, for aromatic hydrocarbons and phenols under fermentative/methanogenic conditions; finally, it discusses the relevance of these processes to bioremediation of contaminated groundwater aquifers.  相似文献   

8.
Changes in organic matter degradation and microbial communities during thermophilic composting were compared using two different types of anaerobic sludge, one from mesophilic methane fermentation, containing a high concentration of proteins (S-sludge), and the other from thermophilic methane fermentation, containing high concentrations of lipids and fibers (K-sludge). The difference in the organic matter degradation rate corresponded to the difference in the organic matter constituents; the CO(2) evolution rate was greater in the composting of S-sludge than of K-sludge; moreover, the NH(3) evolution resulting from the protein degradation was especially higher in the composting of S-sludge. Then the differences in the microbial communities that contributed to each composting were determined by the PCR-DGGE method. Ureibacillus sp., which is known as a degrader with high organic matter degradation activity, was observed during the composting of S-sludge, whereas Thermobifida fusca, which is a well known thermophilic actinomycete that produces enzymes for lignocellulose degradation, were observed during the composting of K-sludge.  相似文献   

9.
Esterase and dehydrogenase activities were determined in depth profiles of sediments from the south-east Atlantic using fluorometric methods. The sensitivity of both methods was sufficient to record enzymatic activities in deep-sea clay and foraminiferous sand. Depending on water depth and location, significant differences between the depth profiles of enzyme activities could be determined. They appear to be dependent on the organic-matter input from sedimentation. Conclusions about the mode of microbial degradation of organic matter (oxic, anoxic, type of electron acceptors) are possible, using suitable chemical parameters. Under oxic conditions (Eh>200 mv) it was possible (using the method developed for dehydrogenase activities) to determine depth profiles similar to those of the esterase activities. Under suboxic or anoxic conditions, an appropriate separation between biological (dehydrogenase activity) and chemical resazurin reduction was not possible.  相似文献   

10.
Aquatic sediments harbour diverse microbial communities that mediate organic matter degradation and influence biogeochemical cycles. The pool of bioavailable carbon continuously changes as a result of abiotic processes and microbial activity. It remains unclear how microbial communities respond to heterogeneous organic matrices and how this ultimately affects heterotrophic respiration. To explore the relationships between the degradation of mixed carbon substrates and microbial activity, we incubated batches of organic‐rich sediments in a novel bioreactor (IsoCaRB) that permitted continuous observations of CO2 production rates, as well as sequential sampling of isotopic signatures (δ13C, Δ14C), microbial community structure and diversity, and extracellular enzyme activity. Our results indicated that lower molecular weight (MW), labile, phytoplankton‐derived compounds were degraded first, followed by petroleum‐derived exogenous pollutants, and finally by higher MW polymeric plant material. This shift in utilization coincided with a community succession and increased extracellular enzyme activities. Thus, sequential utilization of different carbon pools induced changes at both the community and cellular level, shifting community composition, enzyme activity, respiration rates, and residual organic matter reactivity. Our results provide novel insight into the accessibility of sedimentary organic matter and demonstrate how bioavailability of natural organic substrates may affect the function and composition of heterotrophic bacterial populations.  相似文献   

11.
Towards environmental systems biology of Shewanella   总被引:1,自引:0,他引:1  
Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.  相似文献   

12.
Highly managed turfgrass systems accumulate considerable soil organic C, which supports a diverse and robust soil microbial community. Degradation of this soil organic C is mediated by a suite of soil enzymes. The relationship between these enzyme activities and the quality of soil organic C is central to understanding the dynamics of soil organic matter. We examined the activities of several soil enzymes involved in microbial C acquisition, including β-glucosidase, N-acetyl-β-glucosaminidase, cellulase, chitinase, and phenol oxidase, and characterized the chemical composition of soil organic matter using Fourier transform infrared spectroscopy (FTIR) in a turfgrass chronosequence (1–95 years old) and adjacent native pines. Non-metric multidimensional scaling analysis showed that the chemical composition of soil organic matter varied with turf age and land use (turf versus pines). Using the polysaccharide peak (1,060 cm−1) as a reference, both aliphatic (2,930 cm−1) and carboxylic (1,650 and 1,380 cm−1) compounds increased with turf age, indicating that soil organic matter became more recalcitrant. Soil enzyme activities per unit soil mass increased with turf age and were correlated to soil C content. Most soil enzyme activities in native pines were similar to those in young turf, but the cellulase activity was similar to or greater than the activity in old turfgrass systems. On a soil C basis, however, the activities of N-acetyl-β-glucosaminidase and cellulase decreased with turf age; this reduction was correlated to the relative changes in the chemical composition of soil organic matter. We observed that the chemical composition of soil organic matter was significantly correlated with the enzyme activity profile when expressed per unit microbial biomass C, but not per unit soil organic C. Our results suggest that chemical composition of soil organic matter changes with turf age and this change partially determines the relative abundance of C-degrading soil enzymes, likely through the influence on microbial community composition.  相似文献   

13.
长期施肥对双季稻田土壤微生物学特性的影响   总被引:12,自引:0,他引:12  
为探明不同施肥处理对早稻和晚稻各个生育时期稻田土壤微生物生物量碳、氮和微生物熵的影响,以湖南宁乡长期定位试验为平台,应用氯仿熏蒸-K_2SO_4提取法和化学分析法系统分析了定位长达29年5种施肥处理之间(化肥、秸秆还田+化肥、30%有机肥+70%化肥、60%有机肥+40%化肥和无肥)双季稻田土壤微生物生物量碳、氮和微生物熵的差异。结果表明,早稻和晚稻各主要生育时期,长期施肥均能提高土壤微生物生物量碳、氮含量和微生物熵,各施肥处理土壤微生物生物量碳、氮含量和微生物熵均随水稻生育期推进呈先增加后降低的变化趋势,均于齐穗期达到最大值,成熟期达到最低值;其中,以60%有机肥和30%有机肥处理双季稻田土壤微生物生物量碳、氮含量和微生物熵均为最高,均显著高于其他处理,其大小顺序表现为60%有机肥30%有机肥秸秆还田化肥无肥。长期有机无机配施可以提高土壤微生物生物量碳、氮和微生物熵,有机肥与化肥配施对提高土壤肥力效果最好。土壤微生物生物量碳、氮及微生物熵可以反映土壤质量的变化,可作为评价土壤肥力的生物学指标。  相似文献   

14.
Dissolved organic matter (DOM) is a critical phase in terrestrial carbon and nutrient cycling forming the basis of many ecosystem functions, yet the primary drivers controlling its flux from organic horizons and resultant chemical composition remain only partially understood. We studied dissolved organic matter production and chemistry from organic soil horizons across a 4.1 My old well-constrained chronosequence in Hawaii. Controlled soil column irrigation and leaching experiments were conducted on field moist organic soil horizons to quantify microbial activity, DOM production and chemistry. Both microbial activity (defined as CO2 production per unit substrate C) and DOM production were found to be lowest in the youngest (0.3 ky) and oldest (4.1 My) sites of the chronosequence, where nutrients (N and P respectively) were most limiting. By contrast, DOM production and microbial activity was greatest at the intermediate-aged (20–350 ky) sites where nutrients were least limiting, unrelated to the mass of organic matter found in the organic horizons. While differences in production rates were found, 13C NMR spectroscopic results indicated that there was a convergence of chemistry from the solid to the dissolved phase at all sites. In particular, all DOM samples were found to have a high proportion of aromatic acids. With supporting data from a diverse range of ecosystems, we postulate that chemical homogenization of DOM relative to source material is a common feature of many ecosystems due to two microbially mediated processes: (1) similar extracellular enzymatic oxidation conferring solubility to a subset of degradation products; and (2) the rapid selective consumption of the more labile organic compounds in the soil solution.  相似文献   

15.
Soil microbial community interacts with a range of particulate material in the soil, consisting of both inorganic and organic compounds with different levels of water solubility. Though sparingly water-soluble and insoluble organic compounds in the soil may affect living organisms, they are difficult to introduce into microbiological media. Their biological activity (i.e., their effect on soil microorganisms) thus has been almost neglected in most of the cultivation assays. To fill this gap, we propose the use of fine organic particles prepared from soil organic matter that are introduced into a laboratory medium where microbial community is cultivated. To this purpose, submicrometer particles consisting of sparingly water-soluble or insoluble soil organic matter were obtained from humic horizons of two soils by precipitation of organics dissolved in tetrahydrofuran by addition of water. The particles could then be size fractionated by centrifugation, and coarse fraction obtained from humic horizon formed under spruce forest was tested for effects on complex microbial community developing under laboratory conditions. The results indicate that low concentration (20 mg/L) of the particles is efficient to affect the composition of the bacterial community revealed by terminal restriction fragment length polymorphism. The work contributes to understanding the factors that determine the composition of soil microbial community.  相似文献   

16.
Microbes have been shown to naturally form veritable electric grids in which different species acting as electron donors and others acting as electron acceptors cooperate. The uptake of electrons from cells adjacent to them is a mechanism used by microorganisms to gain energy for cell growth and maintenance. The external discharge of electrons in lieu of a terminal electron acceptor, and the reduction of external substrates to uphold certain metabolic processes, also plays a significant role in a variety of microbial environments. These vital microbial respiration events, viz. extracellular electron transfer to and from microorganisms, have attracted widespread attention in recent decades and have led to the development of fascinating research concerning microbial electrochemical sensors and bioelectrochemical systems for environmental and bioproduction applications involving different fuels and chemicals. In such systems, microorganisms use mainly either (1) indirect routes involving use of small redox-active organic molecules referred to as redox mediators, secreted by cells or added exogenously, (2) primary metabolites or other intermediates, or (3) direct modes involving physical contact in which naturally occurring outer-membrane c-type cytochromes shuttle electrons for the reduction or oxidation of electrodes. Electron transfer mechanisms play a role in maximizing the performance of microbe?Celectrode interaction-based systems and help very much in providing an understanding of how such systems operate. This review summarizes the mechanisms of electron transfer between bacteria and electrodes, at both the anode and the cathode, in bioelectrochemical systems. The use over the years of various electrochemical approaches and techniques, cyclic voltammetry in particular, for obtaining a better understanding of the microbial electrocatalysis and the electron transfer mechanisms involved is also described and exemplified.  相似文献   

17.
The flow of carbon and nutrients from plant production into detrital food webs is mediated by microbial enzymes released into the environment (ecoenzymes). Ecoenzymatic activities are linked to both microbial metabolism and environmental resource availability. In this paper, we extend the theoretical and empirical framework for ecoenzymatic stoichiometry from nutrient availability to carbon composition by relating ratios of ??-1,4-glucosidase (BG), acid (alkaline) phosphatase (AP), ??-N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP) and phenol oxidase (POX) activities in soils to measures of organic matter recalcitrance, using data from 28 ecosystems. BG and POX activities are uncorrelated even though both are required for lignocellulose degradation. However, the ratio of BG:POX activity is negatively correlated with the relative abundance of recalcitrant carbon. Unlike BG, POX activity is positively correlated with (NAG + LAP) and AP activities. We propose that the effect of organic matter recalcitrance on microbial C:N and C:P threshold element ratios (TER) can be represented by normalizing BG, AP and (NAG + LAP) activities to POX activity. The scaling relationships among these ratios indicate that the increasing recalcitrance of decomposing organic matter effectively reverses the growth rate hypothesis of stoichiometric theory by decreasing carbon and nutrient availability and slowing growth, which increases TERN:P. This effect is consistent with the narrow difference between the mean elemental C:N ratios of soil organic matter and microbial biomass and with the inhibitory effect of N enrichment on rates of decomposition and microbial metabolism for recalcitrant organic matter. From these findings, we propose a conceptual framework for bottom-up decomposition models that integrate the stoichiometry of ecoenzymatic activities into general theories of ecology.  相似文献   

18.
Biodegradation of ferrihydrite-associated organic matter   总被引:3,自引:0,他引:3  
The association of organic molecules with mineral surfaces is a major mechanism to stabilize soil organic matter against biodegradation. We performed microbial incubation experiments to quantify the mineralization of soil organic matter associated with ferrihydrite by adsorption and coprecipitation. Samples were produced using either water-extractable organic matter of a Podzol forest-floor layer (FFE) or a sulfonated lignin. Incubation was carried out with an inoculum extracted from the forest-floor layer under oxic conditions at pH 4.8 over 68 days. Our data show that the association with ferrihydrite stabilized the associated organic matter: the degradation of the polysaccharide-rich FFE was slowed down, while the degradation of lignin was inhibited. Since differences in the degradability of adsorbed and coprecipitated organic matter were small, we conclude that coprecipitation did not lead to a significant formation of microbial inaccessible organic matter domains in our experiments.  相似文献   

19.
The structure and functional activity of the microbial communities formed under different environmental conditions of the Khoito-Gol mineral springs are investigated. The habitat of microorganisms in the Khoito-Gol springs is characterized by abundant hydrogen sulfide and intense circulation of sulfur with the participation of sulfate-reducing, thionic, colorless, and purple bacteria. The main terminal process of microbial destruction of organic matter is sulfate reduction.  相似文献   

20.
The photochemical transformation of dissolved organic matter (DOM) in lakes and oceans has been shown to either reduce or enhance bacterial utilization. We compared the effects of UV radiation on the bacterial use of DOM in a wide range of lakes. Although complex DOM was converted in all irradiated samples into carboxylic acids that are readily utilized by bacteria, irradiation in several lakes resulted in a decreased ability of DOM to support bacterial growth. The effect of irradiation on the ability of DOM to promote bacterial growth was a positive function of the terrestrial humic matter, and a negative function of indigenous algal production. We suggest that the net effect of irradiation is a result of counteracting but concurrent processes rendering DOM either labile or recalcitrant. Humic DOM is predominantly transformed into forms of increased lability, whereas photochemical transformation into compounds of decreased bacterial substrate quality dominates in algal-derived DOM. Hence, solar-induced photochemical reactions interact with microbial degraders in different ways, depending on the origin and nature of the organic matter, affecting the transfer of energy within aquatic food webs, as well as the degradation and preservation of detrital organic matter, in different directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号