首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.  相似文献   

2.
The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downstream analysis of the scRNA-seq data. We propose a statistical method, SDImpute (Single-cell RNA-seq Dropout Imputation), to implement block imputation for dropout events in scRNA-seq data. SDImpute automatically identifies the dropout events based on the gene expression levels and the variations of gene expression across similar cells and similar genes, and it implements block imputation for dropouts by utilizing gene expression unaffected by dropouts from similar cells. In the experiments, the results of the simulated datasets and real datasets suggest that SDImpute is an effective tool to recover the data and preserve the heterogeneity of gene expression across cells. Compared with the state-of-the-art imputation methods, SDImpute improves the accuracy of the downstream analysis including clustering, visualization, and differential expression analysis.  相似文献   

3.
Technological advances have enabled us to profile multiple molecular layers at unprecedented single-cell resolution and the available datasets from multiple samples or domains are growing. These datasets, including scRNA-seq data, scATAC-seq data and sc-methylation data, usually have different powers in identifying the unknown cell types through clustering. So, methods that integrate multiple datasets can potentially lead to a better clustering performance. Here we propose coupleCoC+ for the integrative analysis of single-cell genomic data. coupleCoC+ is a transfer learning method based on the information-theoretic co-clustering framework. In coupleCoC+, we utilize the information in one dataset, the source data, to facilitate the analysis of another dataset, the target data. coupleCoC+ uses the linked features in the two datasets for effective knowledge transfer, and it also uses the information of the features in the target data that are unlinked with the source data. In addition, coupleCoC+ matches similar cell types across the source data and the target data. By applying coupleCoC+ to the integrative clustering of mouse cortex scATAC-seq data and scRNA-seq data, mouse and human scRNA-seq data, mouse cortex sc-methylation and scRNA-seq data, and human blood dendritic cells scRNA-seq data from two batches, we demonstrate that coupleCoC+ improves the overall clustering performance and matches the cell subpopulations across multimodal single-cell genomic datasets. coupleCoC+ has fast convergence and it is computationally efficient. The software is available at https://github.com/cuhklinlab/coupleCoC_plus.  相似文献   

4.
5.
Single-cell RNA sequencing enables us to characterize the cellular heterogeneity in single cell resolution with the help of cell type identification algorithms. However, the noise inherent in single-cell RNA-sequencing data severely disturbs the accuracy of cell clustering, marker identification and visualization. We propose that clustering based on feature density profiles can distinguish informative features from noise. We named such strategy as ‘entropy subspace’ separation and designed a cell clustering algorithm called ENtropy subspace separation-based Clustering for nOise REduction (ENCORE) by integrating the ‘entropy subspace’ separation strategy with a consensus clustering method. We demonstrate that ENCORE performs superiorly on cell clustering and generates high-resolution visualization across 12 standard datasets. More importantly, ENCORE enables identification of group markers with biological significance from a hard-to-separate dataset. With the advantages of effective feature selection, improved clustering, accurate marker identification and high-resolution visualization, we present ENCORE to the community as an important tool for scRNA-seq data analysis to study cellular heterogeneity and discover group markers.  相似文献   

6.
7.
With the rapid accumulation of biological omics datasets, decoding the underlying relationships of cross-dataset genes becomes an important issue. Previous studies have attempted to identify differentially expressed genes across datasets. However, it is hard for them to detect interrelated ones. Moreover, existing correlation-based algorithms can only measure the relationship between genes within a single dataset or two multi-modal datasets from the same samples. It is still unclear how to quantify the strength of association of the same gene across two biological datasets with different samples. To this end, we propose Approximate Distance Correlation (ADC) to select interrelated genes with statistical significance across two different biological datasets. ADC first obtains the k most correlated genes for each target gene as its approximate observations, and then calculates the distance correlation (DC) for the target gene across two datasets. ADC repeats this process for all genes and then performs the Benjamini-Hochberg adjustment to control the false discovery rate. We demonstrate the effectiveness of ADC with simulation data and four real applications to select highly interrelated genes across two datasets. These four applications including 21 cancer RNA-seq datasets of different tissues; six single-cell RNA-seq (scRNA-seq) datasets of mouse hematopoietic cells across six different cell types along the hematopoietic cell lineage; five scRNA-seq datasets of pancreatic islet cells across five different technologies; coupled single-cell ATAC-seq (scATAC-seq) and scRNA-seq data of peripheral blood mononuclear cells (PBMC). Extensive results demonstrate that ADC is a powerful tool to uncover interrelated genes with strong biological implications and is scalable to large-scale datasets. Moreover, the number of such genes can serve as a metric to measure the similarity between two datasets, which could characterize the relative difference of diverse cell types and technologies.  相似文献   

8.
Clustering is a prevalent analytical means to analyze single cell RNA sequencing (scRNA-seq) data but the rapidly expanding data volume can make this process computationally challenging. New methods for both accurate and efficient clustering are of pressing need. Here we proposed Spearman subsampling-clustering-classification (SSCC),a new clustering framework based on random projection and feature construction,for large-scale scRNA-seq data. SSCC greatly improves clustering accuracy,robustness,and computational efficacy for various state-of-the-art algorithms benchmarked on multiple real datasets. On a dataset with 68,578 human blood cells,SSCC achieved 20%improvement for clustering accuracy and 50-fold acceleration,but only consumed 66%memory usage,compared to the widelyused software package SC3. Compared to k-means,the accuracy improvement of SSCC can reach 3-fold. An R implementation of SSCC is available at https://github.com/Japrin/sscClust.  相似文献   

9.
Annotating cell types is a critical step in single-cell RNA sequencing(scRNA-seq) data analysis. Some supervised or semi-supervised classification methods have recently emerged to enable automated cell type identification. However, comprehensive evaluations of these methods are lacking. Moreover, it is not clear whether some classification methods originally designed for analyzing other bulk omics data are adaptable to scRNA-seq analysis. In this study, we evaluated ten cell type annotation methods publicly available as R packages. Eight of them are popular methods developed specifically for single-cell research, including Seurat, scmap, SingleR, CHETAH, SingleCellNet, scID, Garnett, and SCINA. The other two methods were repurposed from deconvoluting DNA methylation data, i.e., linear constrained projection(CP) and robust partial correlations(RPC). We conducted systematic comparisons on a wide variety of public scRNA-seq datasets as well as simulation data. We assessed the accuracy through intra-dataset and inter-dataset predictions; the robustness over practical challenges such as gene filtering, high similarity among cell types, and increased cell type classes; as well as the detection of rare and unknown cell types. Overall, methods such as Seurat, SingleR, CP, RPC, and SingleCellNet performed well, with Seurat being the best at annotating major cell types. Additionally, Seurat, SingleR, CP, and RPC were more robust against downsampling. However, Seurat did have a major drawback at predicting rare cell populations, and it was suboptimal at differentiating cell types highly similar to each other,compared to SingleR and RPC. All the code and data are available from https://github.com/qianhuiSenn/scRNA_cell_deconv_benchmark.  相似文献   

10.
During early embryonic development, cell fate commitment represents a critical transition or"tipping point"of embryonic differentiation, at which there is a drastic and qualitative shift of the cell populations. In this study, we presented a computational approach, scGET, to explore the gene–gene associations based on single-cell RNA sequencing (scRNA-seq) data for critical transition prediction. Specifically, by transforming the gene expression data to the local network entropy, the single-cell graph entropy (SGE) value quantitatively characterizes the stability and criticality of gene regu-latory networks among cell populations and thus can be employed to detect the critical signal of cell fate or lineage commitment at the single-cell level. Being applied to five scRNA-seq datasets of embryonic differentiation, scGET accurately predicts all the impending cell fate transitions. After identifying the"dark genes"that are non-differentially expressed genes but sensitive to the SGE value, the underlying signaling mechanisms were revealed, suggesting that the synergy of dark genes and their downstream targets may play a key role in various cell development processes. The application in all five datasets demonstrates the effectiveness of scGET in analyzing scRNA-seq data from a network perspective and its potential to track the dynamics of cell differentiation. The source code of scGET is accessible at https://github.com/zhongjiayuna/scGET_Project.  相似文献   

11.
Single-cell RNA-seq (scRNA-seq) can be used to characterize cellular heterogeneity in thousands of cells. The reconstruction of a gene network based on coexpression patterns is a fundamental task in scRNA-seq analyses, and the mutual exclusivity of gene expression can be critical for understanding such heterogeneity. Here, we propose an approach for detecting communities from a genetic network constructed on the basis of coexpression properties. The community-based comparison of multiple coexpression networks enables the identification of functionally related gene clusters that cannot be fully captured through differential gene expression-based analysis. We also developed a novel metric referred to as the exclusively expressed index (EEI) that identifies mutually exclusive gene pairs from sparse scRNA-seq data. EEI quantifies and ranks the exclusive expression levels of all gene pairs from binary expression patterns while maintaining robustness against a low sequencing depth. We applied our methods to glioblastoma scRNA-seq data and found that gene communities were partially conserved after serum stimulation despite a considerable number of differentially expressed genes. We also demonstrate that the identification of mutually exclusive gene sets with EEI can improve the sensitivity of capturing cellular heterogeneity. Our methods complement existing approaches and provide new biological insights, even for a large, sparse dataset, in the single-cell analysis field.  相似文献   

12.
Clustering cells and depicting the lineage relationship among cell subpopulations are fundamental tasks in single-cell omics studies. However, existing analytical methods face challenges in stratifying cells, tracking cellular trajectories, and identifying critical points of cell transitions. To overcome these, we proposed a novel Markov hierarchical clustering algorithm (MarkovHC), a topological clustering method that leverages the metastability of exponentially perturbed Markov chains for systematically reconstructing the cellular landscape. Briefly, MarkovHC starts with local connectivity and density derived from the input and outputs a hierarchical structure for the data. We firstly benchmarked MarkovHC on five simulated datasets and ten public single-cell datasets with known labels. Then, we used MarkovHC to investigate the multi-level architectures and transition processes during human embryo preimplantation development and gastric cancer procession. MarkovHC found heterogeneous cell states and sub-cell types in lineage-specific progenitor cells and revealed the most possible transition paths and critical points in the cellular processes. These results demonstrated MarkovHC’s effectiveness in facilitating the stratification of cells, identification of cell populations, and characterization of cellular trajectories and critical points.  相似文献   

13.

Background

Human cancers are complex ecosystems composed of cells with distinct molecular signatures. Such intratumoral heterogeneity poses a major challenge to cancer diagnosis and treatment. Recent advancements of single-cell techniques such as scRNA-seq have brought unprecedented insights into cellular heterogeneity. Subsequently, a challenging computational problem is to cluster high dimensional noisy datasets with substantially fewer cells than the number of genes.

Methods

In this paper, we introduced a consensus clustering framework conCluster, for cancer subtype identification from single-cell RNA-seq data. Using an ensemble strategy, conCluster fuses multiple basic partitions to consensus clusters.

Results

Applied to real cancer scRNA-seq datasets, conCluster can more accurately detect cancer subtypes than the widely used scRNA-seq clustering methods. Further, we conducted co-expression network analysis for the identified melanoma subtypes.

Conclusions

Our analysis demonstrates that these subtypes exhibit distinct gene co-expression networks and significant gene sets with different functional enrichment.
  相似文献   

14.
One goal of single-cell RNA sequencing (scRNA seq) is to expose possible heterogeneity within cell populations due to meaningful, biological variation. Examining cell-to-cell heterogeneity, and further, identifying subpopulations of cells based on scRNA seq data has been of common interest in life science research. A key component to successfully identifying cell subpopulations (or clustering cells) is the (dis)similarity measure used to group the cells. In this paper, we introduce a novel measure, named SIDEseq, to assess cell-to-cell similarity using scRNA seq data. SIDEseq first identifies a list of putative differentially expressed (DE) genes for each pair of cells. SIDEseq then integrates the information from all the DE gene lists (corresponding to all pairs of cells) to build a similarity measure between two cells. SIDEseq can be implemented in any clustering algorithm that requires a (dis)similarity matrix. This new measure incorporates information from all cells when evaluating the similarity between any two cells, a characteristic not commonly found in existing (dis)similarity measures. This property is advantageous for two reasons: (a) borrowing information from cells of different subpopulations allows for the investigation of pairwise cell relationships from a global perspective and (b) information from other cells of the same subpopulation could help to ensure a robust relationship assessment. We applied SIDEseq to a newly generated human ovarian cancer scRNA seq dataset, a public human embryo scRNA seq dataset, and several simulated datasets. The clustering results suggest that the SIDEseq measure is capable of uncovering important relationships between cells, and outperforms or at least does as well as several popular (dis)similarity measures when used on these datasets.  相似文献   

15.
16.
17.
18.
19.
20.
Here, we introduce scMAGIC (Single Cell annotation using MArker Genes Identification and two rounds of reference-based Classification [RBC]), a novel method that uses well-annotated single-cell RNA sequencing (scRNA-seq) data as the reference to assist in the classification of query scRNA-seq data. A key innovation in scMAGIC is the introduction of a second-round RBC in which those query cells whose cell identities are confidently validated in the first round are used as a new reference to again classify query cells, therefore eliminating the batch effects between the reference and the query data. scMAGIC significantly outperforms 13 competing RBC methods with their optimal parameter settings across 86 benchmark tests, especially when the cell types in the query dataset are not completely covered by the reference dataset and when there exist significant batch effects between the reference and the query datasets. Moreover, when no reference dataset is available, scMAGIC can annotate query cells with reasonably high accuracy by using an atlas dataset as the reference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号