首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Bacteriogenic iron oxides (BIOS) are composite materials that consist of intact and partly degraded remains of bacterial cells intermixed with variable amounts of poorly ordered hydrous ferric oxide (HFO) minerals. They form in response to chemical or bacterial oxidation of Fe2+, which gives rise to Fe3+. Once formed, Fe3+ tends to undergo hydrolysis to precipitate in association with bacterial cells. In acidic systems where the chemical oxidation of Fe2+ is slow, bacteria are capable of accelerating the reaction by several orders of magnitude. At circumneutral pH, the chemical oxidation of Fe2+ is fast. This requires Fe2+ oxidizing bacteria to exploit steep redox gradients where low pO2 slows the abiotic reaction enough to allow the bacteria to compete kinetically. Because of their reactive surface properties, BIOS behave as potent sorbents of dissolved metal ions. Strong enrichments of Al, Cu, Cr, Mn, Sr, and Zn in the solid versus aqueous phase (log 10 Kd values range from 1.9 to 4.2) are common; however, the metal sorption properties of BIOS are not additive owing to surface chemical interactions between the constituent HFO and bacteria. These interactions have been investigated using acid-base tritrations, which show that the concentration of high pKa sites is reduced in BIOS compared to HFO. At the same time, hydroxylamine insoluble material (i.e., residual bacterial fraction) is enriched in low pKa sites relative to both BIOS and HFO. These differences indicate that low pKa or acidic sites associated with bacteria in BIOS interact specifically with high pKa or basic sites on intermixed HFO.  相似文献   

2.
The combination of an improved bacterial desorption method, scanning electron microscopy (SEM), diffuse reflectance and transmission infrared Fourier transform spectroscopy, and a desorption-leaching device like high-pressure liquid chromatography (HPLC) was used to analyze bacterial populations (adhering and free bacteria) and surface-oxidized phases (ferric arsenates and elemental sulfur) during the arsenopyrite biooxidation by Thiobacillus ferrooxidans. The bacterial distribution, the physicochemical composition of the leachate, the evolution of corrosion patterns, and the nature and amount of the surface-oxidized chemical species characterized different behavior for each step of arsenopyrite bioleaching. The first step is characterized by a slow but strong adhesion of bacteria to mineral surfaces, the appearance of a surface phase of elemental sulfur, the weak solubilization of Fe(II), As(III), and As(V), and the presence of the first corrosion patterns, which follow the fragility zones and the crystallographic orientation of mineral grains. After this short step, growth of the unattached bacteria begins, while ferrous ions in solution are oxidized by them. Ferric ions produced by the bacteria can oxidize the sulfide directly and are regenerated by Fe(II) bacterial oxidation. At this time, a bioleaching cycle takes place and a coarse surface phase of ferric arsenate (FeAsO(4) . xH(2)O where x approximately 2) and deep ovoid pores appear. At the end of the bioleaching cycle, the high concentration of Fe(III) and As(V) in solution promotes the precipitation of a second phase of amorphous ferric arsenate (FeAsO(4) . xH(2)O where x approximately 4) in the leachate. Then the biooxidation process ceases: The bacteria adhering to the mineral sufaces are coated by the ferric arsenates and the concentration of Fe(III) on the leachate is found to have decreased greatly. Both oxidation mechanisms (direct and indirect oxidation) have been stopped. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
The oxidation of ferrous ions, in acid solution, by resting suspensions of Thiobacillus ferrooxidans produced sediments consisting of crystalline jarosites, amorphous ferric hydroxysulfates, or both. These products differed conspicuously in chemical composition and infrared spectra from precipitates formed by abiotic oxidation under similar conditions. The amorphous sediments, produced by bacterial oxidation, exhibited a distinctive fibroporous microstructure when examined by scanning electron microscopy. Infrared spectra indicated outer-sphere coordination of Fe(III) by sulfate ions, as well as inner-sphere coordination by water molecules and bridging hydroxo groups. In the presence of excess sulfate and appropriate monovalent cations, jarosites, instead of amorphous ferric hydroxysulfates, precipitated from bacterially oxidized iron solutions. It is proposed that the jarositic precipitates result from the conversion of outer-sphere (Td) sulfate, present in a soluble polymeric Fe(III) complex, to inner-sphere (C3v) bridging sulfate. The amorphous precipitates result from the further polymerization of hydroxo-linked iron octahedra and charge stabilized aggregation of the resulting iron complexes in solution. This view was supported by observations that bacterially oxidized iron solutions gave rise to either amorphous or jarositic sediments in response to ionic environments imposed after oxidation had been completed and the bacteria had been removed by filtration.  相似文献   

4.
The existence of a hydrogen sulfide:ferric ion oxidoreductase, which catalyzes the oxidation of elemental sulfur with ferric ions as an electron acceptor to produce ferrous and sulfite ions, was assayed with washed intact cells and cell extracts of various kinds of iron-oxidizing bacteria, such as Thiobacillus ferrooxidans 13598, 13661, 14119, 19859, 21834, 23270, and 33020 from the American Type Culture Collection, Leptospirillum ferrooxidans 2705 and 2391 from the Deutsche Sammlung von Mikroorganismen, L. ferrooxidans BKM-6-1339 and P3A, and moderately thermophilic iron-oxidizing bacterial strains BC1, TH3, and Alv. It was found that hydrogen sulfide:ferric ion oxidoreductase activity comparable to that of T. ferrooxidans AP19-3 was present in all iron-oxidizing bacteria tested, suggesting a wide distribution of this enzyme in iron-oxidizing bacteria.  相似文献   

5.
Enargite (Cu3AsS4) was leached at 70°C by Sulfolobus BC in shake-flasks. The highest copper dissolution (52% after 550 h of leaching) was obtained with bacteria and 1 g l–1 ferric ion. In the absence of ferric ion, Sulfolobus BC catalyzes the bioleaching of enargite through a direct mechanism after adhesion onto the mineral surface. In ferric bioleaching, arsenic precipitated as ferric arsenate and arsenic remained associated to the solid residues, preventing the presence of a high dissolved arsenic concentration in the leaching solution. About 90% inhibition of bacterial growth rate and activity was observed for dissolved arsenic concentrations above 600 mg l–1 for As(III) and above 1000 mg l–1 for As(V). Arsenic-bearing copper ores and concentrates could be leached by Sulfolobus BC in the presence of ferric iron due to the favourable precipitation of arsenic ion as ferric arsenate, avoiding significant bacterial inhibition.  相似文献   

6.
The interactions between colorless sulfur bacteria and the chemical microgradients at the oxygen-sulfide interface were studied in Beggiatoa mats from marine sediments and in Thiovulum veils developing above the sediments. The gradients of O2, H2S, and pH were measured by microelectrodes at depth increments of 50 μm. An unstirred boundary layer in the water surrounding the mats and veils prevented microturbulent or convective mixing of O2 and H2S. The two substrates reached the bacteria only by molecular diffusion through the boundary layer. The bacteria lived as microaerophiles or anaerobes even under stirred, oxic water. Oxygen and sulfide zones overlapped by 50 μm in the bacterial layers. Both compounds had concentrations in the range of 0 to 10 μmol liter−1 and residence times of 0.1 to 0.6 s in the overlapping zone. The sulfide oxidation was purely biological. Diffusion calculations showed that formation of mats on solid substrates or of veils in the water represented optimal strategies for the bacteria to achieve a stable microenvironment, a high substrate supply, and an efficient competition with chemical sulfide oxidation. The continuous gliding movement of Beggiatoa cells in mats or the flickering motion of Thiovulum cells in veils were important for the availability of both O2 and H2S for the individual bacteria.  相似文献   

7.
The influence of lithotrophic Fe(II)-oxidizing bacteria on patterns of ferric oxide deposition in opposing gradients of Fe(II) and O2 was examined at submillimeter resolution by use of an O2 microelectrode and diffusion microprobes for iron. In cultures inoculated with lithotrophic Fe(II)-oxidizing bacteria, the majority of Fe(III) deposition occurred below the depth of O2 penetration. In contrast, Fe(III) deposition in abiotic control cultures occurred entirely within the aerobic zone. The diffusion microprobes revealed the formation of soluble or colloidal Fe(III) compounds during biological Fe(II) oxidation. The presence of mobile Fe(III) in diffusion probes from live cultures was verified by washing the probes in anoxic water, which removed ca. 70% of the Fe(III) content of probes from live cultures but did not alter the Fe(III) content of probes from abiotic controls. Measurements of the amount of Fe(III) oxide deposited in the medium versus the probes indicated that ca. 90% of the Fe(III) deposited in live cultures was formed biologically. Our findings show that bacterial Fe(II) oxidation is likely to generate reactive Fe(III) compounds that can be immediately available for use as electron acceptors for anaerobic respiration and that biological Fe(II) oxidation may thereby promote rapid microscale Fe redox cycling at aerobic-anaerobic interfaces.  相似文献   

8.
A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments.  相似文献   

9.
Neutrophilic Fe(II) oxidizing microorganisms are found in many natural environments. It has been hypothesized that, at low oxygen concentrations, microbial iron oxidation is favored over abiotic oxidation. Here, we compare the kinetics of abiotic Fe(II) oxidation to oxidation in the presence of the bacterium Leptothrix cholodnii Appels isolated from a wetland sediment. Rates of Fe(II) oxidation were determined in batch experiments at 20°C, pH 7 and oxygen concentrations between 3 and 120 μmol/l. The reaction progress in experiments with and without cells exhibited two distinct phases. During the initial phase, the oxygen dependency of microbial Fe(II) oxidation followed a Michaelis-Menten rate expression (KM = 24.5 ± 10 μmol O2/l, vmax = 1.8 ± 0.2 μmol Fe(II)/(l min) for 108 cells/ml). In contrast, abiotic rates increased linearly with increasing oxygen concentrations. At similar oxygen concentrations, initial Fe(II) oxidation rates were faster in the experiments with bacteria. During the second phase, the accumulated iron oxides catalyzed further oxidative iron precipitation in both abiotic and microbial reaction systems. That is, abiotic oxidation also dominated the reaction progress in the presence of bacteria. In fact, in some experiments with bacteria, iron oxidation during the second phase proceeded slower than in the absence of bacteria, possibly due to an inhibitory effect of extracellular polymeric substances on the growth of Fe(III) oxides. Thus, our results suggest that the competitive advantage of microbial iron oxidation in low oxygen environments may be limited by the autocatalytic nature of abiotic Fe(III) oxide precipitation, unless the accumulation of Fe(III) oxides is prevented, for example, through a close coupling of Fe(II) oxidation and Fe(III) reduction.  相似文献   

10.
Many industrial activities produce H2S, which is toxic at high levels and odorous at even very low levels. Chemolithotrophic sulfur-oxidizing bacteria are often used in its remediation. Recently, we have reported that many heterotrophic bacteria can use sulfide:quinone oxidoreductase and persulfide dioxygenase to oxidize H2S to thiosulfate and sulfite. These bacteria may also potentially be used in H2S biotreatment. Here we report how various heterotrophic bacteria with these enzymes were cultured with organic compounds and the cells were able to rapidly oxidize H2S to zero-valence sulfur and thiosulfate, causing no apparent acidification. Some also converted the produced thiosulfate to tetrathionate. The rates of sulfide oxidation by some of the tested bacteria in suspension, ranging from 8 to 50 µmol min?1 g?1 of cell dry weight at pH 7.4, sufficient for H2S biotreatment. The immobilized bacteria removed H2S as efficiently as the bacteria in suspension, and the inclusion of Fe3O4 nanoparticles during immobilization resulted in increased efficiency for sulfide removal, in part due to chemical oxidation H2S by Fe3O4. Thus, heterotrophic bacteria may be used for H2S biotreatment under aerobic conditions.  相似文献   

11.
In situ characterization and geochemical modelling of acid generation in a mine tailings lake (Moose Lake, ON, Canada) over a 2‐year period (2001–2002; surficial lake pyrrhotite slurry disposal initiated in 2002) show that bacteria significantly impact acidity behaviour through particle‐associated S oxidation and that they do so under conditions that differ from those controlling abiotic pathways. Seasonal epilimnetic pH decreases occurred in both years, decreasing from approximately 3.5 in May to 2.8 by September (2001) or July (2002). Epilimnetic acid generation rates were depth‐dependent, with maximal rates observed not at the surface of lake where O2 concentrations were highest, but rather within a geochemically reactive zone (approximately 1 m thick) of steep, decreasing O2 gradients and dynamic Fe and S geochemistry in the lower epilimnetic region of the lake. Acid generation occurred dominantly through particle rather than aqueous pathways, but model predictions of acid generation via abiotic pyrrhotite oxidation involving either O2 or ferric iron (Fe3+) predicted neither the observed rates nor the depths at which maximal rates occurred. In contrast, model predictions based on microbial pathways involving both O2 and ferric iron (Fe3+) agreed extremely well with both the observed depth profile of H+ generation and the observed rates at any given depth. Imaging showed extensive microbial colonization of epilimnetic‐associated pyrrhotite particles commonly with significant biofilm formation. FISH (fluorescence in situ hybridization) probing of the community in both pelagic and particle compartments indicated mixed communities occurred in both, and that Acidithiobacillus spp. accounted for 2–46% of the total community in either compartment. Initiation of pyrrhotite slurry discharge at the lake surface in 2002 was accompanied by a relative increase in the number of particle‐associated microbes, as well as a relative proportional decrease of Acidithiobacillus spp. in the total microbial community. Given the widespread occurrence of bacteria across mining environments, the implications of our results extend beyond this specific site and provide new insight into bacterially driven processes contributing to bulk system characteristics which are not currently well constrained.  相似文献   

12.
The results of recent research have shown that the bioleaching of sulfide minerals occurs via a two‐step mechanism. In this mechanism, the sulfide mineral is chemically oxidized by the ferric‐iron in the bioleaching liquor. The ferrous‐iron produced is subsequently oxidized to ferric‐iron by the microorganism. Further research has shown that the rates of both the ferric leaching and ferrous‐iron oxidation are governed by the ferric/ferrous‐iron ratio (i.e., the redox potential). During the steady‐state operation of a bioleach reactor, the rate of iron turnover between the chemical ferric leaching of the mineral and the bacterial oxidation of the ferrous‐iron will define the rate and the redox potential at which the system will operate. The balance between the two rates will in turn depend on the species used, the microbial concentration, the residence time employed, the nature of the sulfide mineral being leached, and its active surface area. The model described proposes that the residence time and microbial species present determine the microbial growth rate, which in turn determines the redox potential in the bioleach liquor. The redox potential of the solution, in turn, determines the degree of leaching of the mineral; that is, conversion in the bioleach reactor. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 671–677, 1999.  相似文献   

13.
Bromate (BrO3 ) is a carcinogenic contaminant formed during ozonation of waters that contain trace amounts of bromide. Previous research shows that bromate can be microbially reduced to bromide using organic (i.e. acetate, glucose, ethanol) and inorganic (H2) electron-donating substrates. In this study, the reduction of bromate by a mixed microbial culture was investigated using elemental sulfur (S0) as an electron donor. In batch bioassays performed at 30°C, bromate (0.30 mM) was completely converted to bromide after 10 days and no accumulation of intermediates occurred. Bromate was also reduced in cultures supplemented with thiosulfate and hydrogen sulfide as electron donor. Our results demonstrated that S0-disproportionating microorganisms were responsible for the reduction of bromate in cultures spiked with S0 through an indirect mechanism involving microbial formation of sulfide and subsequent abiotic reduction of bromate by the biogenic sulfide. Confirmation of this mechanism is the fact that bromate was shown to undergo rapid chemical reduction by sulfide (but not S0 or thiosulfate) in abiotic experiments. Bromate concentrations above 0.30 mM inhibited sulfide formation by S0-disproportionating bacteria, leading to a decrease in the rate of bromate reduction. The results suggest that biological formation of sulfide from by S0 disproportionation could support the chemical removal of bromate without having to directly use sulfide as a reagent.  相似文献   

14.
Reductive and oxidative pathways of the sulfur cycle were studied in a marine sediment by parallel radiotracer experiments with 35SO42-, H235S, and 35S2O32- injected into undisturbed sediment cores. The distributions of viable populations of sulfate- and thiosulfate-reducing bacteria and of thiosulfate-disproportionating bacteria were concurrently determined. Sulfate reduction occurred both in the reducing sediment layers and in oxidized and even oxic surface layers. The population density of sulfate-reducing bacteria was >106 cm-3 in the oxic layer, high enough that it could possibly account for the measured rates of sulfate reduction. The bacterial numbers counted in the reducing sediment layers were 100-fold lower. The dominant sulfate reducers growing on acetate or H2 were gas-vacuolated motile rods which were previously undescribed. The products of sulfide oxidation, which took place in both oxidized and reduced sediment layers, were 65 to 85% S2O32- and 35 to 15% SO42-. Thiosulfate was concurrently oxidized to sulfate, reduced to sulfide, and disproportionated to sulfate and sulfide. There was a gradual shift from predominance of oxidation toward predominance of reduction with depth in the sediment. Disproportionation was the most important pathway overall. Thiosulfate disproportionation occurred only as cometabolism in the marine acetate-utilizing sulfate-reducing bacteria, which could not conserve energy for growth from this process alone. Oxidative and reductive cycling of sulfur thus occurred in all sediment layers with an intermediate “thiosulfate shunt” as an important mechanism regulating the electron flow.  相似文献   

15.
Kinetic data of ferrous iron oxidation by Thionacillus ferrooxidans were determined. The aim was to remove H2S (<0.5 ppm) from waste gas by a process proposed earlier. Kinetic data necessary for industrial scale-up were investigated in a chemostat airlift reactor (dilution rate 0.02–0.12 h–1; pH 1.3). Due to the low pH, ferric iron precipitation and wall growth could be avoided. The maximum ferrous iron oxidation rate of submersed bacteria was 0.77 g 1–1 h–1, the maximum specific growth rate about 0.12 h–1 and the yield coefficient was found to be 0.007 g g–1 Fe2+. The specific O2 demand of an exponentially growing, ironoxidizing batch culture was 1.33 mg O2 mg–1 biomass h–1. The results indicate that a pH of 1.3 has no negative influence on the kinetics of iron oxidation and growth. Correspondence to: W. Schäfer-Treffenfeldt  相似文献   

16.
Gallionella ferruginea is able to utilize Fe(II) and the reduced sulfur compounds sulfide and thiosulfate as electron donor and energy source. Tetrathionate and elemental sulfur, on the other hand, are not metabolized. In sulfide-O2 microgradient cultures G. ferruginea grows at the interface between the oxidizing and the reducing zones. Optimal growth depends on low oxygen and sulfide concentrations. Establishing within the gradient protects the bacterium from too high sulfide concentrations. G. ferruginea excretes extracellular polymeric substances (EPS). While in FeS-gradient cultures 2×106 cells/ml were obtained the bacterial mass could be increased to 1–3×108 cells/ml in shaken batch cultures using thiosulfate as substrate. A further increase of bacterial mass by adding an organic carbon source was not possible confirming that G. ferruginea is an obligate autotrophic organism. When growing on sulfide or thiosulfate the otherwise characteristic twisted stalk consisting of ferric hydroxide is lacking. It is thus shown to be a metabolic end product of Fe(II) oxidation rather than metabolically active cellular material.  相似文献   

17.
Massive pyrite (FeS2) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S n 2?, S0). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe1?x S2) to active sulfur species (e.g., Fe1?x S2?y , S0). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S n 2?/S0 speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S n 2?/S0 surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria.  相似文献   

18.

Sulfate-reducing bacteria (SRB) play a major role in the precipitation of metal sulfides in the environment. In this work, biogenic copper sulfide formation was examined in cultures of SRB and compared to chemically initiated Cu sulfide precipitation as a reference system. Mixed cultures of SRB were incubated at 22, 45, and 60°C in nutrient solutions that contained copper sulfate. Abiotic reference samples were produced by reacting uninoculated liquid media with Na2S solutions under otherwise identical conditions. Precipitates were collected anaerobically by centrifugation, frozen in liquid N2, and freeze-dried, followed by analysis using X-ray diffraction (XRD), X-ray fluorescence, and scanning electron microscopy. Covellite (CuS) was the only mineral found in the precipitates. Covellite was less crystalline in the biogenic precipitates than in the abiotic samples based on XRD peak widths and peak to background ratios. Poor crystallinity may be the result of slower precipitation rates in bacterial cultures as compared to the abiotic reference systems. Furthermore, bacterial cells may inhibit the nucleation steps that lead to crystal formation. Incubation at elevated temperatures improved the crystallinity of the biotic specimens.  相似文献   

19.
The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox potential apparatus described previously (P. I. Harvey and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997). This apparatus is designed to control the redox potential in the leaching compartment of an electrolytic cell by reduction or oxidation of dissolved iron. By controlling the redox potential the apparatus maintains the concentrations of ferrous and ferric ions at their initial values. Experiments were conducted in the presence of T. ferrooxidans and under sterile conditions. Analysis of the conversion of zinc sulfide in the absence of the bacteria and analysis of the conversion of zinc sulfate in the presence of the bacteria produced the same results. This indicates that the only role of the bacteria under the conditions used is regeneration of ferric ions in solution. In this work we found no evidence that there is a direct mechanism for bacterial leaching.  相似文献   

20.
In bacterial extraction of copper from low-grade copper sulfide ores, at least three contributions are made by Thiobacillus ferrooxidans. They are: (1) enzymatic oxidation and consequent solubilization of insoluble sulfides; (2) regeneration of ferric lixiviant for chemical oxidation and solubilization of insoluble sulfides; and (3) partial fixation of externally introduced iron in the ore. Although it is not possible at the present time to measure each of these contributions separately, it is possible to measure the combined contributions. Such measurements reveal a strong dependence of extraction efficiency on various physical, chemical, and biological factors. The following physical factors may affect the rate of bacterial copper extraction: particle-size of ore, oxygen and carbondioxide supply, oxidation-reduction potential, pH, temperature, adsorption and ion exchange capacity of ore, and surface tension effects. The following chemical factors may influence the rate of copper extraction: the mineralogy of the ore, the nature of the gangue, the distribution of the sulfide minerals in the host rock, the external supply of ferrous or ferric iron, and the availability of inorganic and organic nutrients. Finally, the following biological agents in addition to T. ferrooxidans may influence the rate of copper extraction: fungi, protozoa, Thiobacillus thiooxidans, and heterotrophic bacteria. Proper control of these various factors is essential for efficient bacterial extraction of copper from low-grade ore. It is recognized that the foregoing environmental factors also influence chemical copper extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号