首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of organic enrichment on sediment biogeochemistry was studied in diffusion controlled sediment mesocosms, where labile organic matter (OM) (fish feed) pulses were added once a week to the sediment surface. Two types of sediments, differing mainly in content of reactive Fe, were used. The aim of this experiment was two-fold, (1) to evaluate the importance of Fe-driven sulfide buffering for sulfide accumulation in surface enriched sediments, and (2) to estimate the diagenetic capacity for degradation of labile OM near the sediment surface. The simulated OM loading rate of 375 mmol C m?2 day?1 led to a 5–6 times increase in CO2-production and a 4–5 times increase in O2-uptake. Sulfate reduction estimated by radiotracer experiments and CO2-release was 105–131 mmol m?2 day?1, but accumulation of porewater sulfide was low in both sediment types. Instead 99% of sulfide was oxidized with O2 at the sediment water interface in the low Fe treatment, whereas 46% of produced sulfide precipitated as Fe-S compound in the high Fe treatment resulting in significantly lower O2-uptake. Furthermore, the accumulation of up to 30% of added OM by the end of the experiment indicated a saturation of the heterotrophic microbial communities in the upper enriched surface layer. These results suggest a maximum diagenetic capacity for OM degradation in the range of ~25 μmol C cm?3 day?1 or 260 mmol m?2 day?1 for the present sediment types.  相似文献   

2.
Lipid biomarkers [fatty acids (FAs), sterols and alcohols] and total organic carbon (TOC) were analyzed in 48 surface (0–2 cm) sediment samples collected twice (winter 2008/2009 and summer/2009) in two transects ranging from 25 to 3,000 m depths. This sampling array encompassed the major upwelling region in the southeastern Brazilian continental margin, where the river influence is probably minimal. The objectives were (1) to evaluate the sources, transport and major areas of organic matter (OM) accumulation in the continental margin and (2) to identify the fraction of OM that is potentially available to secondary benthic producers. As expected from the regional oceanographic characteristics, lipids derived from primary and secondary autochthonous producers (0.073–5.3 mg gTOC?1) made the major fraction of the sedimentary OM, whereas lipids from allochthonous sources (0.043–0.40 mg gTOC?1) and from bacteria (<0.01–0.43 mg gTOC?1) were of relatively less importance. The accumulation of OM in the sediments was highly dependent on the coupling of physical (hydrodynamics) and biological (response to upwelling) factors. It was found that while some restricted areas in the shelf was a sink of labile OM, the export of this material to the upper and middle slope (400–1,000 m depths) can represent an important source of bioavailable OM to the deep sea benthic community.  相似文献   

3.
Microbial-driven organic matter (OM) degradation is a cornerstone of benthic community functioning, but little is known about the relation between OM and community composition. Here we use Rhône prodelta sediments to test the hypothesis that OM quality and source are fundamental structuring factors for bacterial communities in benthic environments. Sampling was performed on four occasions corresponding to contrasting river-flow regimes, and bacterial communities from seven different depths were analyzed by pyrosequencing of 16S rRNA gene amplicons. The sediment matrix was characterized using over 20 environmental variables including bulk parameters (for example, total nitrogen, carbon, OM, porosity and particle size), as well as parameters describing the OM quality and source (for example, pigments, total lipids and amino acids and δ13C), and molecular-level biomarkers like fatty acids. Our results show that the variance of the microbial community was best explained by δ13C values, indicative of the OM source, and the proportion of saturated or polyunsaturated fatty acids, describing OM lability. These parameters were traced back to seasonal differences in the river flow, delivering OM of different quality and origin, and were directly associated with several frequent bacterial operational taxonomic units. However, the contextual parameters, which explained at most 17% of the variance, were not always the key for understanding the community assembly. Co-occurrence and phylogenetic diversity analysis indicated that bacteria–bacteria interactions were also significant. In conclusion, the drivers structuring the microbial community changed with time but remain closely linked with the river OM input.  相似文献   

4.
Myall Lakes has experienced algal blooms in recent years which threaten water quality. Biomarkers, benthic fluxes measured with chambers, and pore water metabolites were used to identify the nature and reactivity of organic matter (OM) in the sediments of Bombah Broadwater (BB), and the processes controlling sediment-nutrient release into the overlying waters. The OM in the sediments was principally from algal sources although terrestrial OM was found near the Myall River. Terrestrial faecal matter was identified in muddy sediments and was probably sourced via runoff from farm lands. The reactive OM which released nutrients into the overlying waters was from diatoms, dinoflagellates and probably cyanobacteria. Microcystis filaments were observed in surface sediments. OM degradation rates varied between 5.3 and 47.1 mmol m?2 day?1 (64–565 mg m?2 day?1), were highest in the muddy sediments and sulphate reduction rates accounted for 20–40% of the OM degraded. Diatoms, being heavy sink rapidly, and are an important vector to transport catchment N and P to sites of denitrification and P-trapping in the sediments. Denitrification rates (mean ~4 mmol N m?2 day?1), up to 7 mmol N m?2 day?1 (105 mg N m?2 day?1) were measured, and denitrification efficiencies were highest (mean = 86 ± 4%) in the sandy sediments (~20% of the area of BB), but lower in the muddy sediments (mean = 63 ± 15%). These differences probably result from higher OM loads and anaerobic respiration in muddy sediments. Most DIP (>70%) from OM degradation was not released into overlying waters but remained trapped in surface sediments. Biophysical (advective) processes were responsible for the measured metabolite (O2, CO2, DSi, DIN and DIP) fluxes across the sediment–water interface.  相似文献   

5.
The present paper contains the results of our microbiological and biogeochemical investigations carried out during a series of expeditions to the White Sea in 2002–2006. The studies were conducted in the open part of the White Sea, as well as in the Onega, Dvina, and Kandalaksha bays. In August 2006, the photosynthetic productivity in the surface water layer was low (47–145 mg C m?2 day?1). Quantitative characteristics of microbial numbers and activity of the the key microbial processes occurring in the water column of the White Sea were explored. Over the 5-year period of observations, the total number of bacterial cells in the surface layer of the water column varied from 50 to 600 thousand cells ml?1. In August 2006, bacterioplankton production (BP) was estimated to be 0.26–3.3 μg C l?1 day?1; the P/B coefficient varied from 0.22 to 0.93. The suspended organic matter had a lighter isotope composition (from ?28.0 to ?30.5‰) due to the predominance of terrigenous organic matter delivered by the Northern Dvina waters. The interseasonal and interannual variation coefficients for phytoplankton production and BP numbers are compared. The bacterioplankton community of the White Sea’s deep water was found to be more stable than that of the surface layer. In the surface layer of bottom sediments, methane concentration was 0.2–5.2 μl dm?3; the rate of bacterial sulfate reduction was 18–260 μg S dm?3 day?1; and the rates of methane production and oxidation were 24–123 and 6–13 nl CH4 dm?3 day?1, respectively. We demonstrated that the rates of microbial processes of the carbon and sulfur cycles occurring in the sediments of the White Sea basin were low.  相似文献   

6.
The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH4+, 53–717 μg/g DW), pH (6.9–7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release of NH4+, the bloom of the microbial biomass, and the change in structure of the bacterial community. These results open new perspectives for basin management since the risk of OM and pollutant transfer to the aquifer is greatly affected by alternating dry and flood periods.  相似文献   

7.
Urban ecosystems are expanding globally, and assessing the ecological consequences of urbanization is critical to understanding the biology of local and global change related to land use. We measured carbon (C) fluxes, nitrogen (N) cycling, and soil microbial community structure in a replicated (n=3) field experiment comparing urban lawns to corn, wheat–fallow, and unmanaged shortgrass steppe ecosystems in northern Colorado. The urban and corn sites were irrigated and fertilized. Wheat and shortgrass steppe sites were not fertilized or irrigated. Aboveground net primary productivity (ANPP) in urban ecosystems (383±11 C m?2 yr?1) was four to five times greater than wheat or shortgrass steppe but significantly less than corn (537±44 C m?2 yr?1). Soil respiration (2777±273 g C m?2 yr?1) and total belowground C allocation (2602±269 g C m?2 yr?1) in urban ecosystems were both 2.5 to five times greater than any other land‐use type. We estimate that for a large (1578 km2) portion of Larimer County, Colorado, urban lawns occupying 6.4% of the land area account for up to 30% of regional ANPP and 24% of regional soil respiration from land‐use types that we sampled. The rate of N cycling from urban lawn mower clippings to the soil surface was comparable with the rate of N export in harvested corn (both ~12–15 g N m?2 yr?1). A one‐time measurement of microbial community structure via phospholipid fatty acid analysis suggested that land‐use type had a large impact on microbial biomass and a small impact on the relative abundance of broad taxonomic groups of microorganisms. Our data are consistent with several other studies suggesting that urbanization of arid and semiarid ecosystems leads to enhanced C cycling rates that alter regional C budgets.  相似文献   

8.
Development of an improved technique for separating microbial cells from marine sediments and standardization of a high‐throughput and discriminative cell enumeration method were conducted. We separated microbial cells from various types of marine sediment and then recovered the cells using multilayer density gradients of sodium polytungstate and/or Nycodenz, resulting in a notably higher percent recovery of cells than previous methods. The efficiency of cell extraction generally depends on the sediment depth; using the new technique we developed, more than 80% of the total cells were recovered from shallow sediment samples (down to 100 meters in depth), whereas ~ 50% of cells were recovered from deep samples (100–365 m in depth). The separated cells could be rapidly enumerated using flow cytometry (FCM). The data were in good agreement with those obtained from manual microscopic direct counts over the range 104–108 cells cm?3. We also demonstrated that sedimentary microbial cells can be efficiently collected using a cell sorter. The combined use of our new cell separation and FCM/cell sorting techniques facilitates high‐throughput and precise enumeration of microbial cells in sediments and is amenable to various types of single‐cell analyses, thereby enhancing our understanding of microbial life in the largely uncharacterized deep subseafloor biosphere.  相似文献   

9.
The basic physical, chemical, and biochemical properties of mountain soils were determined in alpine-zone meadow and moraine areas of the Tatra Mountains (Slovakia, Poland) in 2000–2001. The amount of soil (dry weight soil < 2 mm) varied from 38 to 255 kg m?2 (average of 121 kg m?2) in alpine meadows and averaged 13 kg m?2 in moraine areas. Concentration of organic C was the parameter that most strongly and positively correlated with N, P, S, effective cation exchange capacity (CEC), exchangeable base cations, exchangeable acidity, and all biochemical parameters (C, N, and P in microbial biomass and C mineralisation rates). The relationship between C and P was less straightforward due to inorganic P forms associated with Fe and Al oxides. The average pools of C, N, P, and S, were respectively 696, 41, 2.9, and 1.9 mol m?2 (i.e., 84, 5.7, 0.91 and 0.61 t ha?1) in meadow soils, and 38, 2.1, 0.45 and 0.12 mol m?2 (i.e., 4.5, 0.30, 0.14 and 0.04 t ha?1) in moraine areas. Soil pH was generally low, with the lowest pHH 2 O values (3.8–4.9) in the A-horizons. Average pools of CEC were 12 and 0.7 eq m?2 in meadows and moraine areas, respectively. The base saturation (BS) was 4–45% (12% on average) of CEC, and was primarily based on Ca2+ and K+ (~40% and ~22% of BS, respectively). C:N molar ratios (14–20) were only slightly lower than those observed in the alpine Tatra Mountain zone ~40 years ago. Concentrations of C, N, and P in soil microbial biomass were high (on average 1.6, 3.4, and 25% of total C, N, and P concentrations), suggesting high microbial activity in alpine soils.  相似文献   

10.
Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153‐cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 107 cells mL?1 in the top ten centimeters of sediments. These densities are lower than those calculated for most near‐shore sites but consistent with deep‐sea locations with comparable sedimentation rates. The δ13C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ13C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from ?2.5‰ to ?3.7‰, while δ13C values for the corresponding sedimentary particulate OC (POC) varied from ?26.2‰ to ?23.1‰. The δ13C values of PLFAs ranged between ?29‰ and ?35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by β‐, δ‐, and γ‐Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ13CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ13CDIC and δ13CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment.  相似文献   

11.
Sequential density fractionation separated soil particles into “light” predominantly mineral-free organic matter vs. increasingly “heavy” organo-mineral particles in four soils of widely differing mineralogy. With increasing particle density C concentration decreased, implying that the soil organic matter (OM) accumulations were thinner. With thinner accumulations we saw evidence for both an increase in 14C-based mean residence time (MRT) of the OM and a shift from plant to microbial origin.Evidence for the latter included: (1) a decrease in C/N, (2) a decrease in lignin phenols and an increase in their oxidation state, and (3) an increase in δ13C and δ15N. Although bulk-soil OM levels varied substantially across the four soils, trends in OM composition and MRT across the density fractions were similar. In the intermediate density fractions (~1.8–2.6 g cm?3), most of the reactive sites available for interaction with organic molecules were provided by aluminosilicate clays, and OM characteristics were consistent with a layered mode of OM accumulation. With increasing density (lower OM loading) within this range, OM showed evidence of an increasingly microbial origin. We hypothesize that this microbially derived OM was young at the time of attachment to the mineral surfaces but that it persisted due to both binding with mineral surfaces and protection beneath layers of younger, less microbially processed C. As a result of these processes, the OM increased in MRT, oxidation state, and degree of microbial processing in the sequentially denser intermediate fractions. Thus mineral surface chemistry is assumed to play little role in determining OM composition in these intermediate fractions. As the separation density was increased beyond ~2.6 g cm?3, mineralogy shifted markedly: aluminosilicate clays gave way first to light primary minerals including quartz, then at even higher densities to various Fe-bearing primary minerals. Correspondingly, we observed a marked drop in δ15N, a weaker decrease in extent of microbial processing of lignin phenols, and some evidence of a rise in C/N ratio. At the same time, however, 14C-based MRT time continued its increase. The increase in MRT, despite decreases in degree of microbial alteration, suggests that mineral surface composition (especially Fe concentration) plays a strong role in determining OM composition across these two densest fractions.  相似文献   

12.
【目的】稳定性同位素探针技术(stable isotope probing,SIP)是采用稳定性同位素示踪复杂环境中具有代谢活性微生物的有力工具。然而,在近期利用SIP技术的研究当中,我们发现~(13)C-标记物对试验本身有一定程度影响。例如研究土壤秸秆降解微生物,需将~(13)C-标记作物秸秆添加到土壤,利用微域培养实验和DNA-SIP技术解析主导降解微生物物种。但是~(13)C秸秆的添加以及不同土壤肥力水平是否会影响土壤微生物群落有待商榷。【方法】本研究采集江西鹰潭红壤试验站3种施肥处理(Control、NPK、OM)水稻土壤,分别添加自然丰度(12C)和~(13)C-标记的高丰度水稻秸秆,进行微域培养试验,研究两种秸秆添加下的响应物种以及不同丰度C对生物质气体的累积排放、细菌a-多样性以及群落结构的影响。【结果】研究发现,3种施肥土壤下,2种丰度秸秆处理间C累计排放无差异。但是,寡营养条件(Control)下,~(13)C-标记秸秆处理的细菌a-多样性高,12C秸秆处理群落异质性高,稳定性较差,无差异性物种;与~(12)C秸秆处理相比,富营养条件(NPK和OM)下,~(13)C-标记秸秆处理的细菌a-多样性和群落结构无差异,但存在差异物种,主要集中于变形菌门和稀有物种。【结论】本研究的结果表明~(13)C标记秸秆对微生物群落有一定影响,因此在后续的SIP试验中,高丰度秸秆虽可被用来作为标记底物,但需慎用。  相似文献   

13.
The sedimentary pyrite sulfur isotope (δ34S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34S geochemistry. Pyrite δ34S values often capture δ34S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34S trends and δ34S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment–water interface of this sinkhole hosts a low-oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34S signatures in early Earth environments. Porewater sulfide δ34S values vary by up to ~25‰ throughout the day due to light-driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34S variability, instead of variations in average cell-specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34S values of pyrite are similar to porewater sulfide δ34S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34S signatures of pyrite deposited in organic-rich, iron-poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.  相似文献   

14.

Stable carbon (C) and nitrogen (N) isotope ratios of sedimentary organic matter (OM) can reflect the biogeochemical history of aquatic ecosystems. However, diagenetic processes in sediments may alter isotope records of OM via microbial activity and preferential degradation of isotopically distinct organic components. This study investigated the isotope alteration caused by preferential degradation in surface sediments sampled from a eutrophic reservoir in Germany. Sediments were treated sequentially with hot water extraction, hydrochloric acid hydrolysis, hydrogen peroxide oxidation and di-sodium peroxodisulfate oxidation to chemically simulate preferential degradation pathways of sedimentary OM. Residue and extracts from each extraction step were analyzed using elemental analyzer-isotope ratio mass spectrometry and solid-state 13C nuclear magnetic resonance spectroscopy. Our results show that stable C and N isotope ratios reacted differently to changes in the biochemical composition of sedimentary OM. Preferential degradation of proteins and carbohydrates resulted in a 1.2‰ depletion of 13C, while the isotope composition of 15N remained nearly the same. Sedimentary δ15N values were notably altered when lignins and lipids were oxidized from residual sediments. Throughout the sequential fractionation procedure, δ13C was linearly correlated with the C:N of residual sediments. This finding demonstrates that changes in biochemical composition caused by preferential degradation altered δ13C values of sedimentary OM, while this trend was not observed for δ15N values. Our study identifies the influence of preferential degradation on stable C isotope ratios and provide additional insight into the isotope alteration caused by post-depositional processes.

  相似文献   

15.
Aims: The aim of the study was to investigate the feasibility of a continuous reactor for psychrophilic anaerobic wastewater treatment by using the sludge from cold natural environment. Methods and Results: Six sludge samples (S1–S6) were collected from different cold natural locations to select sludge with high anaerobic microbial activity under low temperatures. After a 225‐day incubation, the maximum specific methane production rate of a waterfowl lake sediment (S1) at 15°C (70·5 mLCH4 gVSS?1 day?1) was much higher than all other samples. S1 was thus chosen as the seed sludge for the reactor treating synthetic brewery wastewater at 15°C, by immobilizing the micro‐organisms on polyurethane foam carriers. The chemical oxygen demand (COD) removal efficiency reached over 80% after 240‐day operation at an organic loading rate of 5·3 kg m?3 day?1, and significant enrichment of biomass was observed. Clone libraries of the microbial communities in the inoculum had high diversities for both archaea and bacteria. Along with a decrease in microbial community diversities, the dominant bacteria (79·5%) at the end of the operation represented the phylum Firmicutes, while the dominant archaeon (41·5%) showed a similarity of 98% with the psychrotolerant methanogen Methanosarcina lacustris. Conclusions: The possibility of using anaerobic micro‐organisms from cold environments in anaerobic wastewater treatment under psychrophilic conditions is supported by these findings. Significance and Impact of the Study: This study enriches the theory on microbial community and the application on anaerobic treatment of sludge from cold natural environments.  相似文献   

16.
1. To gain a better understanding of the heterotrophic nature of small headwater streams in forested landscapes we explored the spatial and temporal variability of in‐stream organic matter processes. Three methods were used to measure the benthic metabolism of different in‐stream habitats in seven streams throughout a calendar year. This allowed us to analyse the contribution of various metabolic habitats (i.e. sediment, leaf litter, cobbles) to in‐stream metabolism during a natural flow regime. Furthermore, it allowed us to define in‐stream patchiness based on functional rather than structural elements. 2. Bacterial growth, measured using a leucine assay, displayed a quadratic relationship over time with a peak in warmer months and consistently higher bacterial growth in fine depositional (3.00–710.64 mg C m?2 day?1) than coarse gravel (38.84–582.85 mg C m?2 day?1) sediments. 3. Community metabolism, measured using dissolved oxygen chambers, showed distinct diel patterns and consistently greater net daily metabolism in leaf packs (?261.76 to ?24.50 mg C m?2 day?1) than fine depositional sediments (?155.00 to ?15.56 mg C m?2 day?1). Coarse gravel sediments (?49.55 to ?16.88 mg C m?2 day?1) and cobble habitats (?151.98 to 55.38 mg C m?2 day?1) exhibited the lowest metabolic rates. Modelled whole‐stream metabolism was highly variable among streams and temporal patterns appeared driven by temperature and the relative contribution of patch configuration as a function of flow. 4. Cellulose decomposition potential showed higher rates of microbial activity in fine depositional compared to coarse gravel sediments (30.5 and 29.1 kg average cotton tensile strength loss respectively), though there were higher rates of thread loss indicative of macroinvertebrate activity in gravel compared to depositional sediment (21% and 13% average thread loss respectively), with a slight quadratic trend. The high variability among habitats, streams and over time in this integrative measure may be explained by variability in local microbial activity as well as the potential for macroinvertebrates to contribute across patches. 5. There were strong relationships among benthic processes and habitat structure, nutrient status, stream temperature and flow. Different habitats had distinct metabolic characteristics and these characteristics appear to influence stream food webs and biogeochemical cycling depending on the relative abundance of habitats. Generally, within habitat variability was less than among habitat variability and among stream variability was less than temporal variability. Hence, in terms of the spatial and temporal heterogeneity of benthic processes, these small headwater streams showed predictable metabolic patterns. However, there were few correlations between differing measures of benthic metabolism at the same patch and this suggests that caution should be taken when attempting to infer the rates of one level of metabolic activity (e.g. whole community metabolism) based on another (e.g. bacterial productivity).  相似文献   

17.
Nitrogen (N) addition has been well documented to decrease plant biodiversity across various terrestrial ecosystems. However, such generalizations about the impacts of N addition on soil microbial communities are lacking. This study was conducted to examine the impacts of N addition (urea-N fertilizer) on soil microbial communities in a semi-arid temperate steppe in northern China. Soil microbial biomass carbon (C), biomass N (MBN), net N mineralization and nitrification, and bacterial and fungal community level physiological profiles (CLPP) along an N addition gradient (0–64 g N m?2 year?1) were measured. Three years of N addition caused gradual or step increases in soil NH4-N, NO3-N, net N mineralization and nitrification in the early growing season. The reductions in microbial biomass under high N addition levels (32 and 64 g N m?2 year?1) are partly attributed to the deleterious effects of soil pH. An N optimum between 16 and 32 g N m?2 year?1 in microbial biomass and functional diversity exists in the temperate steppe in northern China. Similar N loading thresholds may also occur in other ecosystems, which help to interpret the contrasting observations of microbial responses to N addition.  相似文献   

18.
Marine benthic communities are effective indicators of environmental change. Yet in the Arctic, there are few empirical tests of how sustained climatic change may influence community structure. Northern Svalbard is influenced by both warm Atlantic and cold Arctic water masses, providing an opportunity to assess potential effects of long-term environmental changes by examining spatial variation in community structure. We examined benthic macroinfaunal communities and sediment pigments under Atlantic and Arctic water masses on the northern shelf and fjords of Svalbard. We report on infaunal biomass, abundance, species composition, and diversity at 10 stations spanning 79°–81°N and ranging in depth from 200 to 500?m. Benthic biomass averaged 128?g?WW?m?2 (48–253?g?WW?m?2), mean density was 3,635?ind.?m?2 (780–7,660?ind.?m?2), and species richness varied from 45 to 136?taxa?stn.?1. Abundance-based community structure clustered stations in groups related to water mass characteristics, with Atlantic and Arctic shelf stations being well distinguished from each other. Dominant taxa were different in Atlantic- and Arctic-influenced locations. Faunal biomass was highest in the Atlantic-influenced fjords, followed by Arctic fjords and Arctic shelf stations, with Atlantic shelf stations having the lowest biomass. Species richness and diversity were inversely related to biomass. Patterns in faunal biomass were strongly correlated with sedimentary pigments (R 2?=?0.74 for chl a and R 2?=?0.77 for phaeopigments), with large differences in sedimentary pigment concentration among stations. These relationships suggest that benthic fauna on the northern Svalbard shelf are food limited and dependent on predictable, albeit episodic, delivery of organic matter from the water column.  相似文献   

19.
The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ?14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = ?22.2 ± 3 ‰; ?14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = ?12.4 ± 1 ‰; ?14C = ?270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = ?5.7 ± 2.5 ‰; ?14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (?14C = ?248 to ?202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (?14C = ?90 to ?88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (?297 to ?244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.  相似文献   

20.
The research performed in August 2004 within the framework of the Russian-American Long-term Census of the Arctic (RUSALCA) resulted in the first data concerning the rates of the key microbial processes in the water column and bottom sediments of the Bering strait and the Chukchi Sea. The total bacterial counts in the water column varied from 30 × 103 cells ml?1 in the northern and eastern parts to 245 × 103 cells ml?1 in the southern part. The methane content in the water column of the Chukchi sea varied from 8 nmol CH4l?1 in the eastern part of the sea to 31 nmol CH4l?1 in the northern part of the Herald Canyon. Microbial activity occurred in the upper 0–3 cm of the bottom sediments; the methane formation rate varied from 0.25 to 16 nmol CH4dm?3 day?1. The rates of methane oxidation varied from 1.61 to 14.7 nmol CH4dm?3 day?1. The rates of sulfate reduction varied from 1.35 to 16.2 μmol SO 4 2? dm?1 day?1. The rate of methane formation in the sediments increased with depth, while sulfate reduction rates decreased (less than 1 μmol SO 4 2? dm?3 day?1). These high concentrations of biogenic elements and high rates of microbial processes in the upper sediment layers suggest a specific type of trophic chain in the Chukchi Sea. The approximate calculated balance of methane emission from the water column into the atmosphere is from 5.4 to 57.3 μmol CH4m?2 day?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号