首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acidophilic bacteria inhabiting acidic mine regions cause natural leaching of sulphidic ores. They are now exploited in industrial operations for leaching of metals and beneficiation of low-grade and recalcitrant ores. Recent trends emphasize application of thermoacidophiles and genetic engineering of ore-leaching bacteria for greater success in this area. This requires an in-depth understanding on the molecular genetics of these bacteria and construction of cloning vectors for them. Metal resistance is considered as the most suitable phenotypic trait for cloning vectors of bio-mining chemolithoautotrophic (viz. Acidithiobacillus ferrooxidans) and heterotrophic (Acidiphilium and Acidocella species) bacteria of mine environments. These bacteria take part in ore-leaching either directly or indirectly, exhibit low to high level of resistance/tolerance to various metals under different conditions. Majority of these bacteria contain one or more plasmids--the genetic elements that usually carry metal resistant genes. But none of the At. ferrooxidans plasmids has been definitely proved to harbour metal-resistant genes which have mostly been found in the chromosome of this bacterium. Plasmids of acidophilic heterotrophs of the genera Acidiphilium and Acidocella, on the other hand, carry metal resistant genes. While genes bestowing arsenic resistance in Acidiphilium multivorum are similar to those analyzed from other sources, the metal (Cd and Zn)-resistance conferring cloned plasmid DNA fragments from Acidiphilium symbioticum KM2 and Acidocella GS19h strains were found to have no sequence similarity with the reported Cd- and Zn-resistant genes. Such observations indicate some novel aspects of metal resistance in acidophilic bacteria.  相似文献   

2.
A biflagellated protozoan was isolated from an acidic drainage stream located inside a disused pyrite mine. The stream contained copious amounts of acid streamer bacterial growths, and the flagellate was observed in situ apparently grazing the streamer bacteria. The protozoan was obligately acidophilic, growing between pH 1.8 and 4.5, but not at pH 1.6 or 5.0, with optimum growth between pH 3 and 4. It was highly sensitive to copper, molybdenum, silver, and uranium, but tolerated ferrous and ferric iron up to 50 and 25 mM, respectively. In the laboratory, the protozoan was found to graze a range of acidophilic bacteria, including the chemolithotrophs Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, and the heterotroph Acidiphilium cryptum. Thiobacillus thiooxidans and Thiobacillus acidophilus were not grazed. Filamentous growth of certain acidophiles afforded some protection against being grazed by the flagellate. In mixed cultures of T. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed preferential grazing of the former. The possibility of using acidophilic protozoa as a means of controlling bacteria responsible for the production of acid mine drainage is discussed.Offprint requests to: Dr. D. B. Johnson.  相似文献   

3.
Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using (32)P radiolabels, probe specificity was characterized by hybridization dissociation temperature (T(d)) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined T(d)s. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris.  相似文献   

4.
The biodiversity of culturable acidophilic microbes in three acidic (pH 2.7–3.7), metal-rich waters at an abandoned subarctic copper mine in central Norway was assessed. Acidophilic bacteria were isolated by plating on selective solid media, and dominant isolates were identified from their physiological characteristics and 16S rRNA gene sequences. The dominant iron-oxidizing acidophile in all three waters was an Acidithiobacillus ferrooxidans -like eubacterium, which shared 98% 16S rDNA identity with the type strain. A strain of Leptospirillum ferrooxidans was obtained from one of the waters after enrichment in pyrite medium, but this iron oxidizer was below detectable levels in the acidic waters themselves. In two sites, there were up to six distinct heterotrophic acidophiles, present at 103 ml−1. These included Acidiphilium -like isolates (one closely related to Acidiphilium rubrum , a second to Acidiphilium cryptum and a third apparently novel isolate), an Acidocella -like isolate (96% 16S rDNA identity to Acidocella facilis ) and a bacterium that shared 94.5% 16S rDNA identity to Acidisphaera rubrifaciens. The other numerically significant heterotrophic isolate was not apparently related to any known acidophile, with the closest match (96% 16S rDNA sequence identity) to an acetogen, Frateuria aurantia . The results indicated that the biodiversity of acidophilic bacteria, especially heterotrophs, in acidic mine waters may be much greater than previously recognized.  相似文献   

5.
Bacteriochlorophyll (Bchl)a was found in strains of the strictly aerobic acidophilic heterotrophic bacteria:Acidiphilium rubrum, A. angustum, andA. cryptum. Absorption spectra of the cell-free extracts showed a large peak at 865 nm and a small peak around 802 nm. Anaerobic growth was not observed in either the light or the dark. Bchla was not detected in eitherA. organovorum orA. facilis. Bchla contents were less than ca. 0.7 nmol/mg dry cell weight, being variable among the species.  相似文献   

6.
Molecular genetics of Thiobacillus ferrooxidans.   总被引:9,自引:0,他引:9       下载免费PDF全文
Thiobacillus ferrooxidans is a gram-negative, highly acidophilic (pH 1.5 to 2.0), autotrophic bacterium that obtains its energy through the oxidation of ferrous iron or reduced inorganic sulfur compounds. It is usually dominant in the mixed bacterial populations that are used industrially for the extraction of metals such as copper and uranium from their ores. More recently, these bacterial consortia have been used for the biooxidation of refractory gold-bearing arsenopyrite ores prior to the recovery of gold by cyanidation. The commercial use of T. ferrooxidans has led to an increasing interest in the genetics and molecular biology of the bacterium. Initial investigations were aimed at determining whether the unique physiology and specialized habitat of T. ferrooxidans had been accompanied by a high degree of genetic drift from other gram-negative bacteria. Early genetic studies were comparative in nature and concerned the isolation of genes such as nifHDK, glnA, and recA, which are widespread among bacteria. From a molecular biology viewpoint, T. ferrooxidans appears to be a typical member of the proteobacteria. In most instances, cloned gene promoters and protein products have been functional in Escherichia coli. Although T. ferrooxidans has proved difficult to transform with DNA, research on indigenous plasmids and the isolation of the T. ferrooxidans merA gene have resulted in the development of a low-efficiency electroporation system for one strain of T. ferrooxidans. The most recent studies have focused on the molecular genetics of the pathways associated with nitrogen metabolism, carbon dioxide fixation, and components of the energy-producing mechanisms.  相似文献   

7.
Plasmid and transposon transfer to Thiobacillus ferrooxidans.   总被引:4,自引:0,他引:4       下载免费PDF全文
J B Peng  W M Yan    X Z Bao 《Journal of bacteriology》1994,176(10):2892-2897
The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred to acidophilic, obligately chemolithotrophic Thiobacillus ferrooxidans from Escherichia coli by conjugation. A genetic marker of kanamycin resistance was expressed in T. ferrooxidans. Plasmid RP4 was transferred back to E. coli from T. ferrooxidans. The broad-host-range IncQ vector pJRD215 was mobilized to T. ferrooxidans with the aid of plasmid RP4 integrated in the chromosome of E. coli SM10. pJRD215 was stable, and all genetic markers (kanamycin/neomycin and streptomycin resistance) were expressed in T. ferrooxidans. By the use of suicide vector pSUP1011, transposon Tn5 was introduced into T. ferrooxidans. The influence of some factors on plasmid transfer from E. coli to T. ferrooxidans was investigated. Results showed that the physiological state of donor cells might be important to the mobilization of plasmids. The transfer of plasmids from E. coli to T. ferrooxidans occurred in the absence of energy sources for both donor and recipient.  相似文献   

8.
The species composition of the microbial association involved in industrial tank biooxidation of the concentrate of refractory pyrrhotite-containing pyrite-arsenopyrite gold-arsenic ore of the Olympiadinskoe deposit at 39°C was studied by cultural and molecular biological techniques. Pure microbial cultures were isolated, their physiological characteristics were investigated, and their taxonomic position was determined by 16S rRNA gene sequencing. The library of 16S rRNA gene clones obtained from the total DNA isolated from the biomass of the pulp of industrial reactors was analyzed. The diversity of microorganisms revealed by cultural techniques in the association of acidophilic chemolithotrophs (Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, Ferroplasma acidiphilum, Alicyclobacillus tolerans, and Acidiphilium cryptum) was higher than the diversity of the 16S rDNA clone library (At. ferrooxidans, L. ferriphilum, and F. acidiphilum). The combination of microbiological and molecular biological techniques for the investigation of the biodiversity in natural and anthropogenic microbial communities promotes detection of new phylogenetic microbial groups in these communities.  相似文献   

9.
Naturally occurring chlorophyllous pigments, which function as the cofactor in the early photochemical reaction of photosynthesis, have been proven beyond question to be magnesium-complexed porphyrin derivatives. Phototrophic organisms that use (bacterio)chlorophylls ([B]Chls) containing metals other than Mg were unknown for a long time. This common knowledge of natural photosynthesis has recently been modified by the striking finding that a novel purple pigment, zinc-chelated-BChl (Zn-BChl) a, is present as the major and functional pigment in species of the genus Acidiphilium. Acidiphilium species are obligately acidophilic chemoorganotrophic bacteria that grow and produce photopigments only under aerobic conditions. Although the mechanism of photosynthesis with Zn-BChl a in Acidiphilium species is similar to that seen in common purple bacteria, some characteristic photosynthetic features of the acidophilic bacteria are also found. The discovery of natural photosynthesis with Zn-BChl has not only provided a new insight into our understanding of bacterial photosynthesis but also raised some interesting questions to be clarified. The major questions are why the acidophilic bacteria have selected Zn-BChl for their photosynthesis and how they synthesize Zn-BChl and express photosynthetic activity with it in their natural habitats. In this article we review the current knowledge of the biology of Acidiphilium as aerobic photosynthetic bacteria with Zn-BChl a and discuss the interesting topics noted above.  相似文献   

10.
Acidobacterium is proposed as a new genus for the acidophilic, chemoorganotrophic bacteria containing menaquinone isolated from acidic mineral environments.Acidobacterium capsulatum is proposed for the singleAcidobacterium species which consists of eight strains (Biogroup 5). The members of this species are gram-negative, aerobic, mesophilic, non-spore-forming, capsulated, saccharolytic, and rod-shaped bacteria. They are motile by peritrichous flagella. They can grow between pH 3.0 and 6.0, but not at pH 6.5. They give positive results in tests for esculin hydrolysis, catalase, and -galactosidase. Oxidase and urease are negative. They can use glucose, cellobiose, starch, maltose, or -gentiobiose as a sole carbon source, but cannot use elemental sulfur and ferrous iron as an energy source. The DNA base composition is 59.7–60.8 guanine plus cytosine (G+C) mol%. The major isoprenoid quinone is menaquinone with eight isoprene units (MK-8). The major fatty acid is 13-methyltetradecanoic acid. DNA relatedness between this species and the species ofAcidiphilium, Acidomonas, andDeinobacter was 18 to 2%. From phenotypic and chemotaxonomic characters, these member do not belong to any known taxa of gram-negative bacteria. A culture of the type strain (strain 161) has been deposited in the Japan Collection of Microorganisms as JCM 7670.  相似文献   

11.
From several presumably pure cultures of Thiobacillus ferrooxidans, we isolated a pair of stable phenotypes. One was a strict autotroph utilizing sulfur or ferrous iron as the energy source and unable to utilize glucose; the other phenotype was an acidophilic obligate heterotroph capable of utilizing glucose but not sulfur or ferrous iron. The acidophilic obligate heterotroph not only was encountered in cultures of T. ferrooxidans, but also was isolated with glucose-mineral salts medium, pH 2.0, directly from coal refuse. By means of deoxyribonucleic acid homology, we have demonstrated that the acidophilic heterotrophs are of a different genotype from T. ferrooxidans, not closely related to this species; we have shown also that the acidophilic obligate heterotrophs, regardless of their source of isolation, are related to each other. Therefore, cultures of T. ferrooxidans reported capable of utilizing organic compounds should be carefully examined for contamination. The acidophilic heterotrophs isolated by us are different from T. acidophilis, which is also associated with T. ferrooxidans but is facultative, utilizing both glucose and elemental sulfur as energy sources. Since they are so common and tenacious in T. ferrooxidans cultures, the heterotrophs must be associated with T. ferrooxidans in the natural habitat.  相似文献   

12.
Acidophilic chemolithotrophic microorganisms (CMs) are widely used for bioleaching of mineral resources. However, the growth of bacteria and their leaching activity are often inhibited (restricted) by organic components, e.g. lysates and exudates. The aims of this study were to examine the extent of cell lysis (CLs) inhibition on acidophilic microorganisms and to identify microorganisms that can utilize CLs products and eliminate their inhibition effect on acidophilic microorganisms. Specifically, it was revealed that Acidithiobacillus caldus was severely inhibited at 5% CLs products, whereas A. ferrooxidans and Leptospirillum ferriphilum are severely inhibited at 20%. It has been found that strains RBA and RBB of heterotrophic bacteria, isolated from anaerobic sludge, can biodegrade CLs products and when co-cultured with A. ferrooxidans, they can alleviate the toxic effect of CLs products under low pH (2–3). It has been shown that besides CLs, isolated strains can grow on glucose, glycerol, yeast extract, citric acid, and tryptone soya broth with an optimum temperature of 35°C and a pH of 3. The strains showed the ability to reduce ferric ions to ferrous ions when glycerol was used as a substrate after 2 days under both aerobic and anaerobic conditions. On the basis of morphophysiological and molecular biological studies, the isolated strains RBA and RBB were identified as Acidocella spp.  相似文献   

13.
Biogeochemical cycling of iron and sulphur in leaching environments   总被引:2,自引:0,他引:2  
Abstract: Bacterial dissimilatory reduction of iron and sulphur in extremely acidic environments is described. Evidence for reduction at two disused mine sites is presented, within stratified 'acid streamers' growths and in sediments from an acid mine drainage stream. A high proportion (approx. 40%) of mesophilic heterotrophic acidophiles were found to be capable of reducing ferric iron (soluble and insoluble forms) under microaerophilic and anoxic conditions. Mixed cultures of Thiobacillus ferrooxidans and Acidiphilium -like isolate SJH displayed cycling of iron in shake flask and fermenter cultures. Oxido-reduction of iron in mixed cultures was determined by oxygen concentration and availability of organic substrates. Some moderately thermophilic iron-oxidis- ing bacteria were also shown to be capable of reducing ferric iron under conditions of limiting oxygen when grown in glycerol/yeast extract or elemental sulphur media. Cycling of iron was observed in pure cultures of these acidophiles. Sulphate-reducing bacteria isolated from acid streamers could be grown in acidified glycerol/yeast extract media (as low as pH 2.9), but not in media used conventionally for their laboratory culture. An endospore-forming, non-motile rod resembling Desulfotomaculum has been isolated. This bacterium has a wide pH spectrum, and appears to be acid-tolerant rather than acidophilic.  相似文献   

14.
A mutant unable to grow under acidic conditions was isolated from the acidophilic heterotrophic bacterium Acidiphilium facilis 24R. The growth of the mutant could be fully restored by the addition of spermidine or lysine at the concentration of 100 μm. The HPLC analysis of polyamine composition showed that spermidine and putrescine were major polyamine components in the parental strain. In the mutant strain, putrescine was replaced by cadaverine. It was found that some polyamines in the cells were conjugated with the other cell components. The growth of the bacterium in the medium below pH 4.5 was inhibited in the presence of α-methylornithine or methylglyoxal-bis(guanylhydrazone), which are inhibitors of rate-limiting enzymes involved in the biosynthesis of polyamines. The growth of the bacterium that had been inhibited in the presence of inhibitors could be fully restored by the addition of putrescine or spermidine. On the basis of these results, it was concluded that polyamines have a significant role in the growth of Acidiphilium facilis 24R under acidic conditions.  相似文献   

15.
Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of concrete corrosion in sanitary sewers. Thiobacillus species are often considered the major representative of the acid-producing bacteria in these environments, and members of the genus Acidiphilium have been implicated to support their growth. Active populations of selected Thiobacillus, Leptospirillum, and Acidiphilium species were compared to total bacterial populations growing on the surfaces of corroding concrete using three oligonucleotide probes that have been confirmed to recognize unique sequences of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and Thiobacillus thiooxidans (probe: Thio820), Leptospirilium ferrooxidans (Probe: Lept581) and members of the genus Acidiphilium (probe: Acdp821). With these genetic probes, fluorescent in situ hybridizations (FISH) were used to identify and enumerate selected bacteria in homogenized biofilm samples taken from the corroding crowns of concrete sewer collection systems operating in Houston, Texas, USA. Direct epifluorescent microscopy demonstrated the ability of FISH to identify significant numbers of active acidophilic bacteria among concrete particles, products of concrete corrosion (e.g. CaSO4), and other mineral debris. As judged by FISH analyses with the species-specific probe Thio820, and a domain-level probe that recognizes all Bacteria (Eub338), T. ferrooxidans and T. thiooxidans comprised between 12% and 42% of the total active Bacteria present in corroding concrete samples. Although both Acidiphilium and Leptospirillum have also been postulated to have ecological significance in acidic sulfur-oxidizing environments, neither genera was detected using genus-specific probes (Lept581 and Acdp821).  相似文献   

16.
Integrative and conjugative elements (ICEs) are mobile genetic elements that transfer from cell to cell by conjugation (like plasmids) and integrate into the chromosomes of bacterial hosts (like lysogenic phages or transposons). ICEs are prevalent in bacterial chromosomes and play a major role in bacterial evolution by promoting horizontal gene transfer. Exclusion prevents the redundant transfer of conjugative elements into host cells that already contain a copy of the element. Exclusion has been characterized mostly for conjugative elements of Gram‐negative bacteria. Here, we report the identification and characterization of an exclusion mechanism in ICEBs1 from the Gram‐positive bacterium Bacillus subtilis. We found that cells containing ICEBs1 inhibit the activity of the ICEBs1‐encoded conjugation machinery in other cells. This inhibition (exclusion) was specific to the cognate conjugation machinery and the ICEBs1 gene yddJ was both necessary and sufficient to mediate exclusion by recipient cells. Through a mutagenesis and enrichment screen, we identified exclusion‐resistant mutations in the ICEBs1 gene conG. Using genes from a heterologous but related ICE, we found that the exclusion specificity was determined by ConG and YddJ. Finally, we found that under conditions that support conjugation, exclusion provides a selective advantage to the element and its host cells.  相似文献   

17.
Sites polluted with organic compounds frequently contain inorganic pollutants such as heavy metals. The latter might inhibit the biodegradation of the organics and impair bioremediation. Chromosomally located polychlorinated biphenyl (PCB) catabolic genes ofAlcaligenes eutrophus A5,Achromobacter sp. LBS1C1 andAlcaligenes denitrificans JB1 were introduced into the heavy metal resistantAlcaligenes eutrophus strain CH34 and related strains by means of natural conjugation. Mobile elements containing the PCB catabolic genes were transferred fromA. eutrophus A5 andAchromobacter sp. LB51C1 intoA. eutrophus CH34 after transposition onto their endogenous IncP plasmids pSS50 and pSS60, respectively. The PCB catabolic genes ofA. denitrificans JB1 were transferred intoA. eutrophus CH34 by means of RP4::Mu3A mediated prime plasmid formation. TheA. eutrophus CH34 transconjugant strains expressed both catabolic and metal resistance markers. Such constructs may be useful for the decontamination of sites polluted by both organics and heavy metals.  相似文献   

18.
19.
The Acidiphilium strains inhabit acidic mine regions where they are subjected to occasional environmental stresses such as high and low temperatures, exposure to various heavy metals, etc. Change in morphology is one of the strategies that bacteria adopt to cope with environmental stresses; however, no study on this aspect has been reported in the case of Acidiphilium sp. This work is an attempt using the acidophilic heterotrophic bacterium Acidiphilium symbioticum H8. It was observed that the maximum alterations in size occurred when the bacterium was exposed to sub-inhibitory concentrations of Cu and Cd. Loosely packed coccobacillus-type normal cells formed characteristic chains of coccoidal lenticular shape with constrictions at the junctions between them in the presence of Cd; Cu induced transformation of cells to become round shaped; Ni caused the cells to aggregate, but Zn showed no effect. Respective metal depositions on the cell surface were confirmed by scanning electron microscopy equipped with energy dispersive X-ray analysis. Cell bound Ca2+ ions were replaced by these metal ions and measured by inductively coupled plasma mass spectrometry from the culture filtrate. Cell shape changed only after the addition of sub-inhibitory concentrations of the metals, but in growth inhibitory concentrations it was similar to the normal cells.  相似文献   

20.
氧化亚铁钩端螺旋菌在固体平板上的培养及形态观察*   总被引:2,自引:0,他引:2  
用底层加入嗜酸性异养细菌Heterotroph Acidiphilium SJH的琼脂糖双层培养基,成功地培养得到氧化亚铁钩端螺旋茵(Leptospirillum ferrooxidans)的单菌落,并在电镜下观察到了该菌的形态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号