首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low-or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.  相似文献   

2.
Bouma  Tjeerd J.  Bryla  David R. 《Plant and Soil》2000,227(1-2):215-221
Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil respiration and (ii) soil CO2 concentrations, during cycles of soil wetting and drying in the citrus rootstock, Volkamer lemon (Citrus volkameriana Tan. and Pasq.). Plants were grown in soil columns filled with three different soil mixtures varying in their sand, silt and clay content. Root and soil respiration rates, soil water content, plant water uptake and soil CO2 concentrations were measured and dynamic relationships among these variables were developed for each soil texture treatment. We found that although the different soil textures differed in their plant-soil water relations characteristics, plant growth was only slightly affected. Root and soil respiration rates were similar under most soil moisture conditions for soils varying widely in percentages of sand, silt and clay. Only following irrigation did CO2 efflux from the soil surface vary among soils. That is, efflux of CO2 from the soil surface was much more restricted after watering (therefore rendering any respiration measurements inaccurate) in finer textured soils than in sandy soils because of reduced porosity in the finer textured soils. Accordingly, CO2 reached and maintained the highest concentrations in finer textured soils (> 40 mmol CO2 mol−1). This study revealed that changes in soil moisture can affect interpretations of root and soil measurements based on CO2 efflux, particularly in fine textured soils. The implications of the present findings for field soil CO2 flux measurements are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Non-phototrophic CO 2 fixation by soil microorganisms   总被引:1,自引:0,他引:1  
Although soils are generally known to be a net source of CO2 due to microbial respiration, CO2 fixation may also be an important process. The non-phototrophic fixation of CO2 was investigated in a tracer experiment with 14CO2 in order to obtain information about the extent and the mechanisms of this process. Soils were incubated for up to 91 days in the dark. In three independent incubation experiments, a significant transfer of radioactivity from 14CO2 to soil organic matter was observed. The process was related to microbial activity and could be enhanced by the addition of readily available substrates such as acetate. CO2 fixation exhibited biphasic kinetics and was linearly related to respiration during the first phase of incubation (about 20–40 days). The fixation amounted to 3–5% of the net respiration. After this phase, the CO2 fixation decreased to 1–2% of the respiration. The amount of carbon fixed by an agricultural soil corresponded to 0.05% of the organic carbon present in the soil at the beginning of the experiment, and virtually all of the fixed CO2 was converted to organic compounds. Many autotrophic and heterotrophic biochemical processes result in the fixation of CO2. However, the enhancement of the fixation by addition of readily available substrates and the linear correlation with respiration suggested that the process is mainly driven by aerobic heterotrophic microorganisms. We conclude that heterotrophic CO2 fixation represents a significant factor of microbial activity in soils.  相似文献   

4.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   

5.
该研究2011年1月开始在鼎湖山针阔叶混交林(混交林)进行模拟酸雨实验,设置4个不同处理水平,即对照(CK)(pH为4.5左右的天然湖水)、T_1(pH=4.0)、T_2(pH=3.25)和T_3(pH=2.5)。2013年1—12月对不同酸雨强度处理下的森林凋落物CO_2释放速率进行为期1 a的连续观测,探讨酸雨对混交林凋落物C排放的影响。结果表明:凋落物CO2释放通量在对照样方为(1 507.41±155.19) g CO_2·m~(-2)·a~(-1),其中湿季和旱季分别占年通量的68.7%和31.3%。模拟酸雨抑制了森林凋落物CO_2释放,与CK相比,T_2和T_3处理下的CO_2释放通量分别显著降低15.4%和42.7%(P0.05);且这种抑制作用具有季节差异性,处理间的显著差异只出现在湿季。凋落物CO_2释放速率与土壤温度和土壤湿度分别呈显著指数相关和显著直线相关,同时,酸雨处理降低了凋落物CO_2释放的温度敏感性。混交林凋落物CO_2释放在模拟酸雨下的抑制效应与土壤累积酸化而导致的土壤微生物活性变化有关,表现为模拟酸雨作用下土壤pH值和微生物量碳显著下降。上述结果说明酸雨是影响混交林土壤碳循环的重要因子之一。  相似文献   

6.
Bioremediation is a popular method in degrading diesel fuel contaminants from soil. Bioremediation can be enhanced by estimating the effect of important environmental parameters on microbial activity. Respirometry was used to develop empirical models describing the effects of temperature, moisture, nitrogen, and phosphorus concentration on microbial activity in a diesel-contaminated soil from Wyoming. Carbon dioxide (CO2) data were analyzed using a base equation where its coefficient values were functions of each parameter. Two physiologically different groups of microorganisms were identified from the results under different operating temperatures. The empirical correlations were combined into one model and this model was tested against a hydrocarbon-contaminated soil collected from a site in Egypt with similar history of contamination. The predicted CO2 evolution agreed well with the actual data obtained from the Egyptian soil samples, showing a sound predicting power of the empirical model for petroleum hydrocarbon biodegradation. Overall, the empirical correlations developed from the respirometric data provide a method to describe microbial activity in diesel-contaminated soils.  相似文献   

7.
We examined the effects of root and litter exclusion on the rate of soil CO2 efflux and microbial biomass using trenching and tent separation techniques in a secondary forest (SF) and a pine (Pinus caribaea Morelet) plantation in the Luquillo Experimental Forest in Puerto Rico. Soil surface CO2 efflux was measured using the alkali trap method at 12 randomly-distributed locations in each treatment (control, root exclusion, litter exclusion, and both root and litter exclusion) in the plantation and the SF, respectively. We measured soil CO2 efflux every two months and collected soil samples at each sampling location in different seasons to determine microbial biomass from August 1996 to July 1997. We found that soil CO2 efflux was significantly reduced in the litter and root exclusion plots (7-year litter and/or root exclusion) in both the secondary forest and the pine plantation compared with the control. The reduction of soil CO2 efflux was 35.6% greater in the root exclusion plots than in the litter exclusion plots in the plantation, whereas a reversed pattern was found in the secondary forest. Microbial biomass was also reduced during the litter and root exclusion period. In the root exclusion plots, total fungal biomass averaged 31.4% and 65.2% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 24% and 8.3% lower than the control plots in the plantation and the secondary forest, respectively. In the litter exclusion treatment, total fungal biomass averaged 69.2% and 69.7% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 48% and 50.1% lower than the control plots in the plantation and the secondary forest, respectively. Soil CO2 efflux was positively correlated with both fungal and bacterial biomass in both the plantation the secondary forest. The correlation between soil CO2 efflux and active fungal biomass was significantly higher in the plantation than in the secondary forest. However, the correlation between the soil CO2 efflux and both the active and total bacterial biomass was significantly higher in the secondary forest than in the plantation in the day season. In addition, we found soil CO2 efflux was highly related to the strong interactions among root, fungal and bacterial biomass by multiple regression analysis (R2 > 0.61, P < 0.05). Our results suggest that carbon input from aboveground litterfall and roots (root litter and exudates) is critical to the soil microbial community and ecosystem carbon cycling in the wet tropical forests.  相似文献   

8.
A 40-day incubation experiment was carried out in order to evaluate the microbial activities and heavy metal availability in long-term contaminated arable and grassland soils after addition of EDTA (ethylenediaminetetraacetic acid) or EDDS ([S,S]-ethylenediaminedisuccinic acid). Soils with similar contamination of heavy metal from the vicinity of a lead smelter were used in the experiment. The soil microbial carbon (Cmic) decreased significantly after addition of EDTA in the arable soil (CM1); lesser effects were observed in the grassland soil (CM2). Addition of EDDS caused a decrease of Cmic during the first 10 days of incubation. In the later phases of the experiment, Cmic increased, and even exceeded the amounts found in the control soils. Respiratory activities and metabolic quotients (qCO2) increased after the addition of the chelating agents into the soils. Higher respiratory activities and qCO2 were observed in the EDTA-treated soils. The readily available heavy metal fractions were extracted with NH4NO3 solution. Readily mobilizable heavy metal fractions of Cd, Pb, Zn, and (in part) Cu increased during the first 3-10 days of incubation in the presence of EDTA. The addition of EDDS particularly increased concentrations of available Cu. Significant correlations between NH4NO3-extractable metals, soil respiratory activities, and qCO2 were found in both soil treatments with EDTA and EDDS. This indicates that enhanced metal mobility seriously affects the microbial processes in experimental soils. In addition, the relationships between NH4NO3-extractable Cd, Cu, and the microbial biomass were found in the CM1 soil amended with EDTA.  相似文献   

9.
A model of soil carbon cycling in forest ecosystems was applied to predict the soil carbon balance in nine forest ecosystems from the tropics to the boreal zone during the past three decades (1965–95). The parameters of carbon flows and initial conditions of carbon pools were decided based on data obtained in each forest stand. Assumptions for model calculation were: (i) primary production (i.e. litterfall and root turnover rates) increased with increasing CO2 concentrations in the atmosphere (10% per 40 p.p.m. CO2); and (ii) temperature increased by 0.6°C per 100 years, but precipitation changed little. The simulation employed a daily time step and used daily air temperature and precipitation observed near each forest stand over an average year during the last decade. The model calculations suggest that the accumulation of total soil carbon increased 8.5–10.4 tC (ton of carbon) ha–1 in broad-leaved forests from the tropics to the cool-temperate zone during the past three decades, but the amount of soil carbon (3.0–8.4 tC ha–1) increased much less in needle forests from the subtropical to boreal zones during the same period. There is a linear relationship between the increasing rate of soil carbon stock during the past three decades (1965–95) in forest stands concerned (RMS, % per 30 years) and annual mean temperature of their soils (T0,°C), as: RMS = 0.34T0 + 4.1. Based on the data of carbon stock in forest soil in each climate zone reported, the global sink of atmospheric CO2 into forest soil was roughly estimated to be 42 GtC (billion tons of carbon) per 30 years, which was 1.4 GtC year–1 on average over the past three decades.  相似文献   

10.
We investigated the effect of ectomycorrhizal colonization, charcoal and CO2 levels on the germination of seeds of Larix kaempferi and Pinus densiflora, and also their subsequent physiological activity and growth. The seeds were sown in brown forest soil or brown forest soil mixed with charcoal, at ambient CO2 (360 μmol mol−1) or elevated CO2 (720 μmol mol−1), with or without ectomycorrhiza. The proportions of both conifer seeds that germinated in forest soil mixed with charcoal were significantly greater than for seeds sown in forest soil grown at each CO2 level (P < 0.05; t-test). However, the ectomycorrhizal colonization rate of each species grown in brown forest soil mixed with charcoal was significantly lower than in forest soil at each CO2 treatment [CO2] (P < 0.01; t-test). The phosphorus concentrations in needles of each seedling colonized with ectomycorrhiza and grown in forest soil were greater than in nonectomycorrhizal seedlings at each CO2 level, especially for L. kaempferi seedlings (P < 0.05; t-test), but the concentrations in seedlings grown in brown forest soil mixed with charcoal were not increased at any CO2 level. Moreover, the maximum net photosynthetic rate of each seedling for light and CO2 saturation (P max) increased when the seedlings were grown with ectomycorrhiza at 720 μmol mol−1 [CO2]. Ectomycorrhizal colonization led to an increase in the stem diameter of each species grown in each soil treatment at each CO2 level. However, charcoal slowed the initial growth of both species of seedling, constraining ectomycorrhizal development. These results indicate that charcoal strongly assists seed germination and physiological activity.  相似文献   

11.
氮添加会引起土壤理化性质和养分有效性的改变。受此影响,森林植物的地上碳同化能力和地下碳分配格局也会相应地发生变化,总体表现为促进植物生长固碳,增加凋落物和植物根系沉积碳输入土壤,并改变上述植物源有机质的数量和化学成分。与此同时,土壤微生物的群落结构和生态功能也会受到氮添加的影响,由于土壤中的有机碳分解、转化和稳定等过程均受到微生物的驱动,因此,氮添加所引起的底物供应差异和微生物响应会影响森林土壤有机碳的矿化,并最终影响森林土壤有机碳库固存、稳定和CO2排放。但目前关于氮添加对森林土壤有机碳库固存能力和CO2排放特征的影响机制仍不清楚,为此,以森林土壤的碳循环过程为线索,综述了氮添加对底物供应、土壤有机碳激发效应、微生物碳代谢等过程的影响,并尝试梳理在氮添加影响下森林土壤有机碳分解、转化和稳定的微生物驱动机制。这有助于预测氮添加对森林土壤"氮促碳汇"的实际效果,以便研究人员在未来氮沉降日益严重背景下更好地预测森林土壤的碳循环特征,寻找提高森林土壤有机碳库固存能力和降低CO2排放相关途径提供参考。同时,还分析了目前相关研究中存在的问题,并对该领域未来的研究热点进行了展望。  相似文献   

12.
Summary A study was made with eight Philippine wetland rice soils to quantify the possible error caused by the CO2 evolved during direct distillation of soil suspensions in aerobic and anaerobic conditions with MgO. The error caused by CO2 was eliminated by absorbing the ammonia distilled in H2SO4, which was gently boiled to derive off the CO2 absorbed. The possible error caused by CO2 was not eliminated when boric acid was used for absorbing ammonia. The difference in NH4 + values determined by using sulfuric acid and boric acid methods gave an estimate of the error caused by CO2. It was found that CO2 evolved caused negative error in the NH4 + values obtained using the direct distillation of soil suspensions with MgO in presence of KCl. The magnitude of error was higher and significant with anaerobic soil samples but this error was negligible with aerobic soils.  相似文献   

13.
Several studies have shown improved soil stability under elevated atmospheric CO2 caused by increased plant and microbial biomass. These studies have not quantified the mechanisms responsible for soil stabilisation or the effect on water relations. The objective of this study was to assess changes in water repellency under elevated CO2. We hypothesised that increased plant biomass will drive an increase in water repellency, either directly or through secondary microbial processes. Barley plants were grown at ambient (360 ppm) and elevated (720 ppm) CO2 concentrations in controlled chambers. Each plant was grown in a separate tube of 1.2 m length constructed from 22 mm depth × 47 mm width plastic conduit trunk and packed with sieved arable soil to 55% porosity. After 10 weeks growth the soil was dried at 40°C before measuring water sorptivity, ethanol sorptivity and repellency at many depths with a 0.14 mm radius microinfiltrometer. This provided a microscale measure of the capacity of soil to rewet after severe drying. At testing roots extended throughout the depth of the soil in the tube. The depth of the measurement had no effect on sorptivity or repellency. A rise in CO2 resulted in a decrease in water sorptivity from 1.13 ± 0.06 (s.e) mm s−1/2 to 1.00 ± 0.05 mm s−1/2 (P < 0.05) and an increase in water repellency from 1.80 ± 0.09 to 2.07 ± 0.08 (P < 0.05). Ethanol sorptivity was not affected by CO2 concentration, suggesting a similar pore structure. Repellency was therefore the primary cause of decreased water sorptivity. The implications will be both positive and negative, with repellency potentially increasing soil stability but also causing patchier wetting of the root-zone.  相似文献   

14.
Summary CO2 evolution, fungal biomass and microbial population of two maize field soils differing in agricultural systemsviz., permanent agriculture on plain lands in valleys and ‘slash and burn’ type of shifting agriculture, were estimated at monthly intervals for one crop cycle. The results showed significant positive correlation among CO2 evolution, fungal biomass, microbial population, organic C and total N. There was significant positive correlation between bacterial population and moisture content in both the agricultural systems. Microbial population and CO2 evolution were always higher in the soils of permanent agriculture as compared to that of ‘slash and burn’ type of shifting agriculture.  相似文献   

15.
Soil gas exchange was investigated in a lowland moist forest in Panama. Soil water table level and soil redox potentials indicate that the soils are not waterlogged. Substantial microspatial variation exists for soil respiration and soil CO2 concentration. During the rainy season, soil CO2 at 40 cm below the surface accumulates to 2.3%–4.6% and is correlated with rainfall during the previous two weeks. Temporal changes in soil CO2 are rapid, large and share similar trends between sampling points. Possible effects of soil CO2 changes on plant growth or phenology are discussed.  相似文献   

16.
Chung H  Zak DR  Lilleskov EA 《Oecologia》2006,147(1):143-154
Atmospheric CO2 and O3 concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO2 and O3 could alter microbial community function and composition. Previously, we have observed that elevated CO2 increased the microbial metabolism of cellulose and chitin, whereas elevated O3 dampened this response. We hypothesized that this change in metabolism under CO2 and O3 enrichment would be accompanied by a concomitant change in fungal community composition. We tested our hypothesis at the free-air CO2 and O3 enrichment (FACE) experiment at Rhinelander, Wisconsin, in which Populus tremuloides, Betula papyrifera, and Acer saccharum were grown under factorial CO2 and O3 treatments. We employed extracellular enzyme analysis to assay microbial metabolism, phospholipid fatty acid (PLFA) analysis to determine changes in microbial community composition, and polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) to analyze the fungal community composition. The activities of 1,4-β-glucosidase (+37%) and 1,4,-β-N-acetylglucosaminidase (+84%) were significantly increased under elevated CO2, whereas 1,4-β-glucosidase activity (−25%) was significantly suppressed by elevated O3. There was no significant main effect of elevated CO2 or O3 on fungal relative abundance, as measured by PLFA. We identified 39 fungal taxonomic units from soil using DGGE, and found that O3 enrichment significantly altered fungal community composition. We conclude that fungal metabolism is altered under elevated CO2 and O3, and that there was a concomitant change in fungal community composition under elevated O3. Thus, changes in plant inputs to soil under elevated CO2 and O3 can propagate through the microbial food web to alter the cycling of C in soil.  相似文献   

17.
Zoe G. Cardon 《Plant and Soil》1995,187(2):277-288
Atmospheric CO2 concentrations can influence ecosystem carbon storage through net primary production (NPP), soil carbon storage, or both. In assessing the potential for carbon storage in terrestrial ecosystems under elevated CO2, both NPP and processing of soil organic matter (SOM), as well as the multiple links between them, must be examined. Within this context, both the quantity and quality of carbon flux from roots to soil are important, since roots produce specialized compounds that enhance nutrient acquisition (affecting NPP), and since the flux of organic compounds from roots to soil fuels soil microbial activity (affecting processing of SOM).From the perspective of root physiology, a technique is described which uses genetically engineered bacteria to detect the distribution and amount of flux of particular compounds from single roots to non-sterile soils. Other experiments from several labs are noted which explore effects of elevated CO2 on root acid phosphatase, phosphomonoesterase, and citrate production, all associated with phosphorus nutrition. From a soil perspective, effects of elevated CO2 on the processing of SOM developed under a C4 grassland but planted with C3 California grassland species were examined under low (unamended) and high (amended with 20 g m–2 NPK) nutrients; measurements of soil atmosphere 13C combined with soil respiration rates show that during vegetative growth in February, elevated CO2 decreased respiration of carbon from C4 SOM in high nutrient soils but not in unamended soils.This emphasis on the impacts of carbon loss from roots on both NPP and SOM processing will be essential to understanding terrestrial ecosystem carbon storage under changing atmospheric CO2 concentrations.Abbreviations SOM soil organic matter - NPP net primary productivity - NEP net ecosystem productivity - PNPP p-nitrophenyl phosphate  相似文献   

18.
In nutrient impoverished landscapes in southwest Australia, terrestrial litter appears to be important in phosphorus (P) turnover and in the gradual accumulation of P in wetland systems. Little is known about the fate of P leached from litter during the wet season and the associated effects of soil microclimate on microbial activity. The effects of temperature, moisture, and litter leaching on soil microbial activity were studied on a transect across a seasonal wetland in southwestern Australia, after the onset of the wet season. Heterotrophic respiration (CO2 efflux) was higher in the dried lakebed and riparian areas than in upland soils, and higher during the day than at night. There were significant variations in CO2 efflux with time of sampling, largely caused by the effect of temperature. The addition of litter leachate significantly increased CO2 efflux, more significantly in soils from upland sites, which had lower moisture and nutrient contents. There was a difference in response of microbial respiration between upland soils and wetland sediments to litter leachate and wetter, warmer conditions. In general, the litter leachate enhanced heterotrophic microbial respiration, and more significantly at warmer conditions (31 °C). The relative fungal to bacterial ratio was 2.9 – 3.2 for surface litter and 0.7–1.0 for soils, suggesting a fungal dominance in heterotrophic respiration of surface litter, but increased bacterial dominance in soils, especially in exposed sediments in the lakebed.  相似文献   

19.
Hagedorn  Frank  Bucher  Jürg B.  Tarjan  David  Rusert  Peter  Bucher-Wallin  Inga 《Plant and Soil》2000,224(2):273-286
The objectives of this study were to estimate how soil type, elevated N deposition (0.7 vs. 7 g N m–2y–1) and tree species influence the potential effects of elevated CO2 (370 vs. 570 mol CO2 mol–1) on N pools and fluxes in forest soils. Model spruce-beech forest ecosystems were established on a nutrient-rich calcareous sand and on a nutrient-poor acidic loam in large open-top chambers. In the fourth year of treatment, we measured N concentrations in the soil solution at different depths, estimated N accumulation by ion exchange resin (IER) bags, and quantified N export in drainage water, denitrification, and net N uptake by trees. Under elevated CO2, concentrations of N in the soil solution were significantly reduced. In the nutrient-rich calcareous sand, CO2 enrichment decreased N concentrations in the soil solution at all depths (–45 to –100%). In the nutrient-poor acidic loam, the negative CO2 effect was restricted to the uppermost 5 cm of the soil. Increasing the N deposition stimulated the negative impact of CO2 enrichment on soil solution N in the acidic loam at 5 cm depth from –20% at low N inputs to –70% at high N inputs. In the nutrient-rich calcareous sand, N additions did not influence the CO2 effect on soil solution N. Accumulation of N by IER bags, which were installed under individual trees, was decreased at high CO2 levels under spruce in both soil types. Under beech, this decrease occurred only in the calcareous sand. N accumulation by IER bags was negatively correlated with current-years foliage biomass, suggesting that the reduction of soil N availability indices was related to a CO2-induced growth enhancement. However, the net N uptake by trees was not significantly increased by elevated CO2. Thus, we suppose that the reduced N concentrations in the soil solution at elevated CO2 concentrations were rather caused by an increased N immobilisation in the soil. Denitrification was not influenced by atmospheric CO2 concentrations. CO2 enrichment decreased nitrate leaching in drainage by 65%, which suggests that rising atmospheric CO2 potentially increases the N retention capacity of forest ecosystems.  相似文献   

20.
Emissions of CO2 from soils make up one of the largest fluxes in the global C cycle, thus small changes in soil respiration may have large impacts on global C cycling. Anthropogenic additions of CO2 to the atmosphere are expected to alter soil carbon cycling, an important component of the global carbon budget. As part of the Duke Forest Free-Air CO2 Enrichment (FACE) experiment, we examined how forest growth at elevated (+200 ppmv) atmospheric CO2 concentration affects soil CO2 dynamics over 7 years of continuous enrichment. Soil respiration, soil CO2 concentrations, and the isotopic signature of soil CO2 were measured monthly throughout the 7 years of treatment. Estimated annual rates of soil CO2 efflux have been significantly higher in the elevated plots in every year of the study, but over the last 5 years the magnitude of the CO2 enrichment effect on soil CO2 efflux has declined. Gas well samples indicate that over 7 years fumigation has led to sustained increases in soil CO2 concentrations and depletion in the δ13C of soil CO2 at all but the shallowest soil depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号