首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases.  相似文献   

2.
Divalent metal transporter 1 (DMT1) can transport a large range of ions, including toxic lead (Pb) and cadmium (Cd), across membranes. In this study, a total of 24 rats were divided into four groups for intragastrical perfusion treatment: control, Pb alone, Cd alone, and Pb + Cd. Pb and Cd contents in blood were detected, and the mRNA and protein levels of DMT1 were analyzed in the cerebellum, cortex, and hippocampus. Both Pb and Cd levels were elevated in all groups perfused with Pb and/or Cd, except for Pb level in the Cd-alone group (P < 0.05). The mRNA level of DMT1 did not differ among the four groups (P > 0.05). However, the DMT1 protein expression was significantly increased by 0.9-, 1.0-, and 1.1-fold in cerebellum, cortex, and hippocampus of the Pb + Cd group than in controls, respectively. Pb and Cd exposure can synergistically induce DMT1 protein synthesis and has implications for transportation of toxic ions in the developing rat’s brain. Chengwu Gu and Songjian Chen contributed equally to this work, they are joint first authors.  相似文献   

3.
Microwave radiation in Escherichia coli and Bacillus subtilis cell suspensions resulted in a dramatic reduction of the viable counts as well as increases in the amounts of DNA and protein released from the cells according to the increase of the final temperature of the cell suspensions. However, no significant reduction of cell density was observed in either cell suspension. It is believed that this is due to the fact that most of the bacterial cells inactivated by microwave radiation remained unlysed. Scanning electron microscopy of the microwave-heated cells revealed severe damage on the surface of most E. coli cells, yet there was no significant change observed in the B. subtilis cells. Microwave-injured E. coli cells were easily lysed in the presence of sodium dodecyl sulfate (SDS), yet B. subtilis cells were resistant to SDS.  相似文献   

4.
在细菌生长过程中,细胞壁起到维持细胞形状和完整性,抵抗内部膨胀压的作用。细胞壁的合成、分裂、再生、循环再利用等与细菌自身生长繁殖和应对环境压力息息相关。目前,细胞壁生长机理,细菌如何调控细胞壁生长及如何与其他细胞过程相协调的机制尚未研究清楚。细胞壁调控机制的解析对了解细菌细胞壁功能、确定药物的作用方式和发展新一代的治疗方法至关重要。对细菌调控细胞壁生长机制的国外研究进展进行了概述,重点阐述了支架蛋白、转录因子、非编码小RNA及蛋白相互作用调控细胞壁的合成、细胞分裂、压力响应的机制,总结了细胞壁调控机制在抗菌药物研发中的应用,并对未来的研究方向进行了展望。  相似文献   

5.
The twin-arginine translocation (Tat) pathway is dedicated to the transport of fully folded proteins across the cytoplasmic membranes of many bacteria and the chloroplast thylakoidal membrane. Accordingly, Tat-dependently translocated proteins are known to be delivered to the periplasm of Gram-negative bacteria, the growth medium of Gram-positive bacteria, and the thylakoid lumen. Here, we present the first example of a protein, YkuE of Bacillus subtilis, that is specifically targeted by the Tat pathway to the cell wall of a Gram-positive bacterium. The cell wall binding of YkuE is facilitated by electrostatic interactions. Interestingly, under particular conditions, YkuE can also be targeted to the cell wall in a Tat-independent manner. The biological function of YkuE was so far unknown. Our present studies show that YkuE is a metal-dependent phosphoesterase that preferentially binds manganese and zinc.  相似文献   

6.
For bacteria and bacteriophages, cell wall digestion by hydrolases is a very important event. We investigated one of the proteins involved in cell wall digestion, the yomI gene product (renamed CwlP). The gene is located in the SP-β prophage region of the Bacillus subtilis chromosome. Inspection of the Pfam database indicates that CwlP contains soluble lytic transglycosylase (SLT) and peptidase M23 domains, which are similar to Escherichia coli lytic transglycosylase Slt70, and the Staphylococcus aureus Gly-Gly endopeptidase LytM, respectively. The SLT domain of CwlP exhibits hydrolytic activity toward the B. subtilis cell wall; however, reverse phase (RP)-HPLC and mass spectrometry revealed that the CwlP-SLT domain has only muramidase activity. In addition, the peptidase M23 domain of CwlP exhibited hydrolytic activity and could cleave d-Ala-diaminopimelic acid cross-linkage, a property associated with dd-endopeptidases. Remarkably, the M23 domain of CwlP possessed a unique Zn(2+)-independent endopeptidase activity; this contrasts with all other characterized M23 peptidases (and enzymes similar to CwlP), which are Zn(2+) dependent. Both domains of CwlP could hydrolyze the peptidoglycan and cell wall of B. subtilis. However, the M23 domain digested neither the peptidoglycans nor the cell walls of S. aureus or Streptococcus thermophilus. The effect of defined point mutations in conserved amino acid residues of CwlP is also determined.  相似文献   

7.
The pathogen Bacillus anthracis uses the Sortase A (SrtA) enzyme to anchor proteins to its cell wall envelope during vegetative growth. To gain insight into the mechanism of protein attachment to the cell wall in B. anthracis we investigated the structure, backbone dynamics, and function of SrtA. The NMR structure of SrtA has been determined with a backbone coordinate precision of 0.40 ± 0.07 Å. SrtA possesses several novel features not previously observed in sortase enzymes including the presence of a structurally ordered amino terminus positioned within the active site and in contact with catalytically essential histidine residue (His126). We propose that this appendage, in combination with a unique flexible active site loop, mediates the recognition of lipid II, the second substrate to which proteins are attached during the anchoring reaction. pKa measurements indicate that His126 is uncharged at physiological pH compatible with the enzyme operating through a “reverse protonation” mechanism. Interestingly, NMR relaxation measurements and the results of a model building study suggest that SrtA recognizes the LPXTG sorting signal through a lock-in-key mechanism in contrast to the prototypical SrtA enzyme from Staphylococcus aureus.  相似文献   

8.
The concentrations of arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) were determined in samples of food items widely consumed by the population of Catalonia, Spain. All samples were randomly acquired in 12 cities of Catalonia between March and June of 2006 and analyzed by inductively coupled plasma mass spectrometry. The dietary intake of these elements was estimated for various age–gender groups of population: children, adolescents, adults, and seniors. In order to determine the temporal trend on the dietary exposure to As, Cd, Hg, and Pb, the current results were compared with those of a previous survey (2000). In the present market basket study, for a standard male adult of 70-kg body weight living in Catalonia, the dietary intakes of As, Cd, Hg, and Pb were 261.01, 9.80, 12.61, and 45.13 μg/day, respectively, while in the 2000 survey, these intakes were 223.59, 15.73, 21.22, and 28.37 μg/day, for As, Cd, Hg, and Pb, respectively. For As, the only food groups currently contributing with measurable amounts to intake of total As were fish and shellfish and cereals, while for Cd the highest contribution to total intake corresponded to pulses, tubers, and cereals. For Hg, the contribution was only due to fish and shellfish, while cereals were the group with the highest contribution to total Pb intake. The estimated intakes of As, Cd, Hg, and Pb are notably lower than the respective provisional tolerable weekly intakes, which indicate that these intakes should not mean additional health risks for the consumers.  相似文献   

9.
The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.  相似文献   

10.
Because tuberculosis is one of the most prevalent and serious infections, countermeasures against it are urgently required. We isolated the antitubercular agents caprazamycins from the culture of an actinomycete strain and created CPZEN-45 as the most promising derivative of the caprazamycins. Herein, we describe the mode of action of CPZEN-45 first against Bacillus subtilis. Unlike the caprazamycins, CPZEN-45 strongly inhibited incorporation of radiolabeled glycerol into growing cultures and showed antibacterial activity against caprazamycin-resistant strains, including a strain overexpressing translocase-I (MraY, involved in the biosynthesis of peptidoglycan), the target of the caprazamycins. By contrast, CPZEN-45 was not effective against a strain overexpressing undecaprenyl-phosphate–GlcNAc-1-phosphate transferase (TagO, involved in the biosynthesis of teichoic acid), and a mutation was found in the tagO gene of the spontaneous CPZEN-45-resistant strain. This suggested that the primary target of CPZEN-45 in B. subtilis is TagO, which is a different target from that of the parent caprazamycins. This suggestion was confirmed by evaluation of the activities of these enzymes. Finally, we showed that CPZEN-45 was effective against WecA (Rv1302, also called Rfe) of Mycobacterium tuberculosis, the ortholog of TagO and involved in the biosynthesis of the mycolylarabinogalactan of the cell wall of M. tuberculosis. The outlook for WecA as a promising target for the development of antituberculous drugs as a countermeasure of drug resistant tuberculosis is discussed.  相似文献   

11.
家蝇抗菌肽对细菌细胞表面特性影响及其作用机理的研究   总被引:3,自引:0,他引:3  
利用微生物对十六烷吸附的方法(MATS方法)、微电泳方法与测定细菌质膜上β-半乳糖苷酶活性的方法,探讨了家蝇抗菌肽对大肠杆菌等6种细菌细胞表面特性及其细胞膜的作用机制。研究结果表明,抗菌肽使细菌表面电负性增强,对G 细菌细胞表面电荷的改变大于对G-的改变,使细菌细胞表面疏水性不同程度的下降。抗菌肽引起细菌细胞膜通透性迅速增加,不同细菌β-半乳糖苷酶释放的最大速度VP在3.86pmol/min~6.92pmol/min,相应的时间TP为0,由此推测抗菌肽对细胞膜的作用机制是“形成孔洞”。  相似文献   

12.
Escherichia coli cell division is effected by a large assembly of proteins called the divisome, of which a subcomplex consisting of three bitopic inner membrane proteins, FtsQ, FtsB, and FtsL, is an essential part. These three proteins, hypothesized to link cytoplasmic to periplasmic events during cell division, contain large periplasmic domains that are of major importance for function and complex formation. The essential nature of this subcomplex, its low abundance, and its multiple interactions with key divisome components in the relatively accessible periplasm make it an attractive target for the development of protein-protein interaction inhibitors. Although the crystal structure of the periplasmic domain of FtsQ has been solved, the structure of the FtsQBL complex is unknown, with only very crude indications of the interactions in this complex. In this study, we used in vivo site-specific photo cross-linking to probe the surface of the FtsQ periplasmic domain for its interaction interfaces with FtsB and FtsL. An interaction hot spot for FtsB was identified around residue Ser-250 in the C-terminal region of FtsQ and a membrane-proximal interaction region for both proteins around residue Lys-59. Sequence alignment revealed a consensus motif overlapping with the C-terminal interaction hot spot, underlining the importance of this region in FtsQ. The identification of contact sites in the FtsQBL complex will guide future development of interaction inhibitors that block cell division.  相似文献   

13.
目的:探讨重楼皂苷VII (Paris saponin VII, PSVII) 对人结肠癌SW480 细胞凋亡和周期的影响及其机制。方法:采用Cell Counting Kit-8(CCk-8)试剂盒方法观察PSVII 对SW-480 细胞增殖的影响;流失细胞术研究PSVII对SW480细胞凋亡和周期的 作用;培养SW-480 细胞并给予1.0 umol/L、2.0 umol/L 和4.0 umol/L PSVII 24 h后,采用Western blot 法检测凋亡相关蛋白 Caspase-3、Caspase-8、Caspase-9、Bax和Bcl-2 及周期相关蛋白Cdk-4、Cdk-6、CyclinD1 和p21 的表达变化。结果:PSVII可明显抑 制SW-480 细胞增殖,并诱导其凋亡,其IC50值为5.25± 0.46 umol/L;PSVII 可促进SW-480 细胞Caspase-3、Caspase-8、Caspase-9、 Bax及p21 的表达,降低Bcl-2、Cdk-4、Cdk-6和CyclinD1 的表达。结论:PSVII可以通过线粒体和死亡受体途径诱导SW-480 细胞 凋亡;将SW-480 细胞周期阻滞于G1 期是通过上调p21,抑制Cdk-4、Cdk-6 与Cyclin D1 周期调控蛋白的表达。  相似文献   

14.
Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting their migration and proliferation in vitro and injury-induced neointima formation in vivo.  相似文献   

15.
16.
Melanin precursors and free radicals, cytotoxic substances, are produced during melanin synthesis by tyrosinase. We compared these cytotoxic effects of L-dopa and oxygen on the cell cycle of melanotic retinal pigment epithelial (RPE) cells with amelanotic RPE cells because of the differences of tyrosinase activities between melanotic and amelanotic RPE cells. Flow cytometric DNA analysis of RPE cells exposed to L-dopa (100 μM and 250 μM) were conducted at several oxygen concentrations (20%, 10%, and 5%). The dose-dependent effect of L-dopa to arrest the cell cycle (the S phase) was more pronounced in melanotic than in amelanotic RPE cells, and oxygen caused arrest in the G1 phase.  相似文献   

17.
目的:探讨羽扇豆醇介导鼠双微基因2(Mouse double microgene 2,MDM2)-p53通路对胃癌细胞生物学行为的影响及相关机制。方法:对数生长期的胃癌小鼠MFC细胞株随机分为三组。实验1组与实验2组给予10 mg/L和20 mg/L的羽扇豆醇处理,对照组以等体积的1×磷酸盐缓冲液处理。对比三组MFC细胞细胞增殖、凋亡、迁移与侵袭,及MDM2-p53通路蛋白表达。结果:细胞处理后6 h与12 h,实验1组与实验2组的细胞增殖指数、细胞迁移与侵袭指数、MDM2蛋白相对表达水平显著低对于对照组,实验2组也低于实验1组,对比差异都有统计学意义(P<0.05)。细胞处理后6 h与12 h,实验1组与实验2组的细胞凋亡指数、p53蛋白相对表达水平显著高于对照组,实验2组也高于实验1组,对比差异都有统计学意义(P<0.05)。结论:羽扇豆醇能促进胃癌细胞p53蛋白的表达,抑制MDM2蛋白的表达,从而促进细胞凋亡,抑制胃癌的增殖、侵袭与转移,且具有剂量依赖性。  相似文献   

18.
Due to their immutable nature, metals are a group of pollutants of much concern. As a result of human activities such as mining and smelting of metalliferous ores, electroplating, gas exhaust, energy and fuel production, fertilizer and pesticide application, etc., metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology, that uses the remarkable ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, appears very promising for the removal of pollutants from the environment. Within this field of phytoremediation, the utilization of plants to transport and concentrate metals from the soil into the harvestable parts of roots and above-ground shoots, i.e., phytoextraction, may be, at present, approaching commercialization. Improvement of the capacity of plants to tolerate and accumulate metals by genetic engineering should open up new possibilities for phytoremediation. The lack of understanding pertaining to metal uptake and translocation mechanisms, enhancement amendments, and external effects of phytoremediation is hindering its full scale application. Due to its great potential as a viable alternative to traditional contaminated land remediation methods, phytoremediation is currently an exciting area of active research.  相似文献   

19.
20.
The surface properties of CuInS2 (CIS) thin‐film solar cell absorbers are investigated by a combination of electron and soft X‐ray spectroscopies. Spatially separated regions of varying colors are observed and identified to be dominated by either CuS or Cu2S surface phases. After their removal by KCN etching, the samples cannot be distinguished by eye and the CIS surface is found to be Cu‐deficient in both regions. However, a significantly more pronounced off‐stoichiometry in the region initially covered by Cu2S can be identified. In this region, the resulting surface band gap is also significantly larger than the EgSurf of the initially CuS‐terminated region. Such variations may represent a hidden parameter which, if overlooked, induces irreproducibility and thus prevents systematic optimization efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号