首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   

2.
【背景】噬藻体是感染蓝藻的病毒,是水生系统的重要组成部分。它们对宿主种群死亡率有重要影响,是控制蓝藻水华生消的潜在因子,对蓝藻群落结构的调控具有重要意义。大量研究揭示了海洋和淡水环境中噬藻体的高度多样性,但目前对高原湿地中噬藻体的多样性知之甚少。【目的】阐明我国纳帕海高原湿地噬藻体g20基因的遗传多样性,为进一步开展高原湿地微生物资源及其生态功能研究提供理论基础。【方法】采集雨季的水体样品,以衣壳蛋白基因g20为标记基因,利用特异性引物Cps1和Cps8对其进行PCR扩增,得到26条不同的g20基因有效序列,并将其与其他生境中g20基因序列进行主坐标分析和系统发育分析。【结果】与其他海洋和淡水的噬藻体序列相比,纳帕海高原湿地中噬藻体的序列与其他稻田序列更为相近;但也存在部分序列单独聚簇,这可能为纳帕海高原湿地中独有的噬藻体类型。【结论】表明该地区的噬藻体较丰富,并具有一定的独特性。  相似文献   

3.
Highly iterated palindromes (HIP) have been used as high resolution molecular markers for assessing the genetic variability and phylogenetic relatedness of heterocystous cyanobacteria (subsections IV and V) representing 12 genera of heterocystous cyanobacteria, collected from different geographical areas of India. DNA fingerprints generated using four HIP markers viz. HIP-AT, HIP-CA, HIP-GC, and HIP-TG showed 100 % polymorphism in all the heterocystous cyanobacteria studied and each marker produced unique and strain-specific banding pattern. Furthermore, phylogenetic affinities based on the dendrogram constructed using HIP DNA profiles of heterocystous cyanobacteria suggest the monophyletic origin of this entire heterocystous clade along with a clear illustration of the polyphyletic origin of the branched Stigonematalean order (Subsection V). In addition, phylogenetic affinities were validated by principal component analysis of the HIP fingerprints. The overall data obtained by both the phylogeny and principal component assessments proved that the entire heterocystous clade was intermixed, and there are immediate needs for classificatory reforms that satisfy morphological plasticity and environmental concerns.  相似文献   

4.
ABSTRACT

While the model bacteria Escherichia coli and Bacillus subtilis harbor single chromosomes, which is known as monoploidy, some freshwater cyanobacteria contain multiple chromosome copies per cell throughout their cell cycle, which is known as polyploidy. In the model cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, chromosome copy number (ploidy) is regulated in response to growth phase and environmental factors. In S. elongatus 7942, chromosome replication is asynchronous both among cells and chromosomes. Comparative analysis of S. elongatus 7942 and S. sp. 6803 revealed a variety of DNA replication mechanisms. In this review, the current knowledge of ploidy and DNA replication mechanisms in cyanobacteria is summarized together with information on the features common with plant chloroplasts. It is worth noting that the occurrence of polyploidy and its regulation are correlated with certain cyanobacterial lifestyles and are shared between some cyanobacteria and chloroplasts.  相似文献   

5.

Background

Cyanobacteria are well known for the production of a range of secondary metabolites. Whilst recent genome sequencing projects has led to an increase in the number of publically available cyanobacterial genomes, the secondary metabolite potential of many of these organisms remains elusive. Our study focused on the 11 publically available Subsection V cyanobacterial genomes, together with the draft genomes of Westiella intricata UH strain HT-29-1 and Hapalosiphon welwitschii UH strain IC-52-3, for their genetic potential to produce secondary metabolites. The Subsection V cyanobacterial genomes analysed in this study are reported to produce a diverse range of natural products, including the hapalindole-family of compounds, microcystin, hapalosin, mycosporine-like amino acids and hydrocarbons.

Results

A putative gene cluster for the cyclic depsipeptide hapalosin, known to reverse P-glycoprotein multiple drug resistance, was identified within three Subsection V cyanobacterial genomes, including the producing cyanobacterium H. welwitschii UH strain IC-52-3. A number of orphan NRPS/PKS gene clusters and ribosomally-synthesised and post translationally-modified peptide gene clusters (including cyanobactin, microviridin and bacteriocin gene clusters) were identified. Furthermore, gene clusters encoding the biosynthesis of mycosporine-like amino acids, scytonemin, hydrocarbons and terpenes were also identified and compared.

Conclusions

Genome mining has revealed the diversity, abundance and complex nature of the secondary metabolite potential of the Subsection V cyanobacteria. This bioinformatic study has identified novel biosynthetic enzymes which have not been associated with gene clusters of known classes of natural products, suggesting that these cyanobacteria potentially produce structurally novel secondary metabolites.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1855-z) contains supplementary material, which is available to authorized users.  相似文献   

6.
The maximum quantum yield of photosystem II was estimated from variable chlorophyll a fluorescence in samples of phytoplankton collected from the Taihu Lake in China to determine the responses of different phytoplankters to irradiance and vertical mixing. Meteorological and environmental variables were also monitored synchronously. The maximum quantum yield of three phytoplankton groups: cyanobacteria, chlorophytes, and diatoms/dinoflagellates, showed a similar diurnal change pattern. F v/F m decreased with a significant depth-dependent variation as irradiance increased during the morning and increased as irradiance declined in the afternoon. Furthermore, the rates of F v/F m depression were dependent upon the photon flux density, whereas the rates of recovery of F v/F m were dependent upon the historical photon density. Moreover, photoinhibition affected the instantaneous growth rates of phytoplankton. Although at noon cyanobacteria had a higher photoinhibition value (up to 41%) than chlorophytes (32%) and diatoms/dinoflagellates (34%) at the surface, no significant difference in diurnal growth rates among the three phytoplankton groups were observed indicating that cyanobacteria could photoacclimate better than chlorophytes and diatoms/dinoflagellates. In addition, cyanobacteria had a higher nonphotochemical quenching value than chlorophytes and diatoms/dinoflagellates at the surface at noon, which indicated that cyanobacteria were better at dissipating excess energy. The ratios of enclosed bottle samples F v/F m to free lake samples F v/F m showed different responses for the three phytoplankton groups to irradiance and vertical mixing when wind speed was approximately constant at about 3.0 m s−1. When wind speed was lower than 3.0 m s−1, cyanobacteria accumulated mainly at the surface and 0.3 m, because of their positive buoyancy, where diurnal growth rates of phytoplankton were relatively higher than those at 0.6 m and 0.9 m. Chlorophytes were homogenized completely by vertical mixing, while diatoms/dinoflagellates avoided active high irradiance by moving downward at noon, and then upward again when irradiance decreased. These results explain the dominance of cyanobacteria in Taihu Lake. Handling editor: L. Naselli-Flores  相似文献   

7.

Plectonema boryanum UTEX 485 was reacted with aqueous AuCl 4 ? solutions ( 2 mM Au) at 25 to 100°C for 1 month, and 200°C for one day. Addition of AuCl4 ? to cyanobacteria killed the cultures instantly, and Au was precipitated throughout the cells as nanoparticles. Precipitation of octahedral crystal platelets of Au occurred in the aqueous fluid, with particle size increasing with increase in temperature from about 1.5 μ m at 25°C to 10 μ m at 100°C. Addition of AuCl4 ? to suspensions of the dead, autoclaved cyanobacteria also precipitated Au from solution, suggesting that the presence of cell degradation products caused instability of AuCl4 ? .  相似文献   

8.
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the μs-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 → 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 → 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.  相似文献   

9.
Microbial mats were collected from hot springs in California (Eagleville) and Nevada (Paradise Valley and Crescent Valley) to determine bacterial community structure and pathways of carbon cycling in different geothermal environments of the western United States. Phospholipid fatty acids (PLFA) at Eagleville contained even-numbered fatty acids, with 16:0 being the most abundant (48.8%), followed by 18:1ω 9c (17.2%), 16:1ω 7c/t (6.3%), and 18:0 (6.2%), which are consistent with lipid profiles of cyanobacteria or other phototrophic bacteria. The PLFA profiles at Paradise Valley and Crescent Valley were dominated by similar even-numbered fatty acids; however, branched fatty acids such as iso- and anteiso- 15:0 and 17:0 were also abundant (up to 7.1% compared to 2.0% at Eagleville), suggesting greater relative abundance of heterotrophic bacteria in these springs. Analysis of neutral lipids was only performed on Eagleville and Paradise Valley springs, which revealed abundant bacterial hopanoids including the 2–methylbacteriohopane-32,33,34,35-tetrol (2-methylBHT) that is specific to cyanobacteria; however, the diversity of hopanoid compounds was significantly lower at Eagleville than at Paradise Valley. The carbon-isotope composition of individual PLFA averaged ?30.7 ± 1.3‰ (n = 7) at Eagleville, ?28.0 ± 1.8‰ (n = 3) at Crescent Valley, and ?29.7 ± 3.1‰ (n = 12) at Paradise Valley. Carbon isotope fractionation between PLFA and CO 2 was only available for Eagleville (?11.7‰) and Paradise Valley (?21.7‰), which indicated the predominance of the Calvin cycle for CO 2 fixation in these hot springs. Bacterial 16S rRNA genes were extracted from environmental samples at Eagleville and Paradise Valley but not Crescent Valley. Clone libraries indicated the predominance of cyanobacteria (50–75%) at these locations, which is consistent with the lipid profiles. Phylogenetic tree of the 16S rRNA genes indicated that most of the cyanobacterial sequences are unknown and may be specific to the Nevada and California hot springs. Phototrophic green non-sulfur bacteria were also present at Eagleville (13%) and Paradise Valley (7%). The remaining sequences were related to α-, β -, and γ -Proteobacteria, Acidobacteria, Deinococcus/Thermus, Bacteroidetes, and Spirochaetes. However, not all of these sequences were present at each of the springs. Results of this study demonstrate the consistency among lipid profiles (phenotypes), carbon isotopes (biogeochemistry), and 16S rRNA genes (genotypes) of the bacterial community in these hot springs, which cumulatively suggest the importance of cyanobacteria in primary production of biomass under the environmental conditions examined.  相似文献   

10.
L. Bruno  P. Albertano 《Plant biosystems》2013,147(4-6):1013-1015
Abstract

Epilithic species of heterocystous cyanobacteria were isolated from Roman hypogea, grown at low photon flux densities and morphologically characterized. Determination of photosynthesis versus irradiance curves and nitrogen fixation activities on three of these strains, showed that their photosynthetic efficiency was low but sufficient to sustain nitrogen fixation.  相似文献   

11.
【背景】蓝藻周围存在伴生细菌,伴生细菌与蓝藻具有复杂的作用关系。【目的】研究淡水聚球藻伴生细菌对聚球藻生长的影响。【方法】采用高通量测序分析聚球藻伴生细菌多样性;平板划线法纯化聚球藻伴生细菌,通过形态观察结合16S rRNA基因序列同源性比对,对其种属关系进行确定;通过聚球藻和不同浓度伴生细菌共培养测定其叶绿素a浓度,分析伴生细菌对聚球藻生长的影响;采用种子发芽试验验证伴生细菌促生功能。【结果】淡水聚球藻伴生细菌优势菌属为产卟啉杆菌属(Porphyrobacter)、根瘤菌属(Rhizobium)、水单胞菌属(Aquimonas)和中慢生根瘤菌属(Mesorhizobium),从聚球藻分离获得了两株伴生细菌JQ1和JQ2,基于16S rRNA基因序列鉴定其分别属于Rhizobium和Peribacillus,通过在聚球藻与不同浓度伴生细菌共培养及水稻发芽试验验证,证明伴生细菌JQ1和JQ2在菌藻比例分别为5:1和15:1时具有促生作用,都对增强秧苗素质和根系发育有一定影响但JQ2与JQ1相比能显著提高水稻种子的发芽率。【结论】淡水聚球藻伴生细菌JQ1和JQ2在适宜的浓度均可显著促进聚球...  相似文献   

12.
Some unicellular N2-fixing cyanobacteria have recently been found to lack a functional photosystem II of photosynthesis. Such organisms, provisionally termed UCYN-A, of the oceanic picoplanktion are major contributors to the global marine N-input by N2-fixation. Since their photosystem II is inactive, they can perform N2-fixation during the day. UCYN-A organisms cannot be cultivated as yet. Their genomic analysis indicates that they lack genes coding for enzymes of the Calvin cycle, the tricarboxylic acid cycle and for the biosynthesis of several amino acids. The carbon source in the ocean that allows them to thrive in such high abundance has not been identified. Their genomic analysis implies that they metabolize organic carbon by a new mode of life. These unicellular N2-fixing cyanobacteria of the oceanic picoplankton are evolutionarily related to spheroid bodies present in diatoms of the family Epithemiaceae, such as Rhopalodia gibba. More recently, spheroid bodies were ultimately proven to be related to cyanobacteria and to express nitrogenase. They have been reported to be completely inactive in all photosynthetic reactions despite the presence of thylakoids. Sequence data show that R. gibba and its spheroid bodies are an evolutionarily young symbiosis that might serve as a model system to unravel early events in the evolution of chloroplasts. The cell metabolism of UCYN-A and the spheroid bodies may be related to that of the acetate photoassimilating green alga Chlamydobotrys.  相似文献   

13.
Filamentous benthic marine cyanobacteria are a prolific source of structurally unique bioactive secondary metabolites. A total of 12 secondary metabolites, belonging to the mixed polyketide–polypeptide structural class, were isolated from the marine cyanobacterium, Lyngbya majuscula, and were tested to determine if they showed activity against barnacle larval settlement. The assays revealed four compounds, dolastatin 16 (1), hantupeptin C (4), majusculamide A (10), and isomalyngamide A (12), that showed moderate to potent anti-larval settlement activities, with EC50 values ranging from 0.003 to 10.6 μg ml?1. In addition, field testing conducted over a period of 28 days (using the modified Phytagel? method) based on the cyanobacterial compound, dolastatin 16, showed significantly reduced barnacle settlement as compared to controls at all the concentrations tested. The results of this study highlight the importance of marine cyanobacteria as an underexplored source of potential environmentally friendly antifoulants.  相似文献   

14.

The cytomorphology and the exopolysaccharides of two heterocystous cyanobacteria, Scytonema ocellatum CP8-2 and Fischerella maior NAV 10 bis, isolated from biofilms collected in two Roman hypogea, were investigated from a cytochemical, ultrastructural and biochemical point of view. Cytochemical stains and observation using light and transmission electron microscopy showed a bi-layered sheath in both cyanobacteria, with a different composition in sulphated and carboxylic groups. RP-HPLC of the extracted polysaccharides forming the mucous matrix showed the neutral sugars glucose and arabinose and the charged galacturonic acid as the main monosaccharides. Circular dichroism spectra recorded at varying pH and temperature showed that these polymers followed a random coil model and did not present a structured organised conformation at ambient temperature. The outcomes of this study increase the understanding of colonization and biodeterioration of important archaeological and cultural sites by cyanobacterial biofilms and the role of the exopolymeric substances involved.  相似文献   

15.
16.
【目的】为了体现亚硝酸盐还原酶在环境中氮生物循环的重要性,研究了它们的分布情况。【方法】利用现有亚硝酸盐还原酶序列在已经测序的基因组数据库中进行查找,研究该酶的分布情况,通过多序列比对比较了它们的序列相似性,通过构建系统发育树比较其进化关系,并利用宏基因组学的方法研究了它们在海洋宏基因组中的分布。【结果】分析结果显示,两类亚硝酸盐还原酶在已测序的细菌和古生菌基因组中分别有397和812个,分别占总量的8%和15.7%,几乎所有的古生菌都含有Ⅱ类酶;它们自身的序列相似性很高,在Ⅰ类酶和Ⅱ类酶中底物结合位点以及Ⅱ类酶的铜离子结合位点保守性都很高,显示该酶序列保守性与其环境功能相适应的特点;进化分析显示它们可能具有共同的进化来源;在海洋宏基因组中,平均每100000读数中分别有6个Ⅰ类和35个Ⅱ类,且2类酶都在热带南太平洋区域有最大分布。【结论】NIR在氮的生物循环及环境修复中可能起到重要作用。  相似文献   

17.
Abstract

Although cyanobacteria are a common group of microorganisms well-suited to utilization in photobioreactors (PBRs), studies of cyanobacteria fouling and its prevention are scarce. Using a cyanobacterium, Anabaena sp. PCC 7120, which had been genetically modified to enhance linalool production, the formation of conditioning films and the effects of these on the physico-chemical surface properties of various PBR materials during initial adhesion and biofilm formation were investigated. The adhesion assay revealed that the overall attachment of Anabaena was substratum dependent and no correlation between the hydrophobicity/roughness of clean material and cell attachment was found. Surface hydrophilicity/hydrophobicity of all the materials changed within 12?h due to formation of conditioning films. ATR-FTIR spectroscopy revealed that the fractional change in protein deposition between 12 to 96?h was consistent with Anabaena cell attachment but polysaccharide deposition was material specific and did not correlate with cell attachment on the PBR materials. Also, the delay in conditioning film proteins on PVC and PTFE indicated that components other than proteins may be responsible for the decrease in contact angles on these surfaces within 12?h. This indicates the important role of the chemical nature of adsorbed conditioning films in determining the initial attachment of Anabaena to PBR materials. The lower rate of attachment of Anabaena on the hydrophilic surfaces (glass and PMMA) between 72?h to 96?h (regime 3) showed that these surfaces could potentially have low fouling characteristics at extended time scales and should be considered for further research.  相似文献   

18.
The complements of restriction endonucleases of 12 strains of cyanobacteria were determined in cell-free extracts, and were compared with the complements of restriction activities assessed by measuring the relative efficiencies of plating of cyanophages on those cyanobacteria. The hosts which were susceptible to all of the phages contained endo R · AvaI and endo R · AvaII, and in several cases probably endo R · AvaIII, or isoschizomers of these enzymes. Three hosts which were lysed by only a subset (1 or 3) of the phages contained different restriction endonuclease. Anabaena sp. PCC 7120 showed apparent phenotypic restriction of phage An-22 grown in hosts with (isoschizomers of) AvaI, II and III, but no corresponding endonuclease has yet been detected in vitro. Nostoc sp. ATCC 29131 (PCC 6705) was found to contain a restriction enzyme, NspBII, with hitherot unknown specificity, C(A/C)GC(T/G)G.  相似文献   

19.
Abstract

Cyanobacteria promote marine biofouling with significant impacts. A qualitative proteomic analysis, by LC-MS/MS, of planktonic and biofilm cells from two cyanobacteria was performed. Biofilms were formed on glass and perspex at two relevant hydrodynamic conditions for marine environments (average shear rates of 4?s?1 and 40?s?1). For both strains and surfaces, biofilm development was higher at 4?s?1. Biofilm development of Nodosilinea sp. LEGE 06145 was substantially higher than Nodosilinea sp. LEGE 06119, but no significant differences were found between surfaces. Overall, 377 and 301 different proteins were identified for Nodosilinea sp. LEGE 06145 and Nodosilinea sp. LEGE 06119. Differences in protein composition were more noticeable in biofilms formed under different hydrodynamic conditions than in those formed on different surfaces. Ribosomal and photosynthetic proteins were identified in most conditions. The characterization performed gives new insights into how shear rate and surface affect the planktonic to biofilm transition, from a structural and proteomics perspective.  相似文献   

20.
As the dominant cyanobacterial species in biological soil crusts (BSCs), Microcoleus vaginatus often suffer from many stress conditions, such as desiccation and high temperature. In this study, the activities of light‐harvesting complexes (LHCs) and reaction centers of photosystem II (PS II) in crust cyanobacteria M. vaginatus were monitored under high temperature and desiccation conditions using chlorophyll fluorescence technology. The results showed that all the fluorescence signals were significantly inhibited by high temperature or desiccation treatments. Under high temperature conditions, it was further demonstrated that PS II reaction centers were first destructed within the first hour, then the LHCs gradually dissociated and free phycocyanin formed within 1–5 h, and the activities of all the light harvesting and reaction center pigment proteins were fully suppressed after 24 h of high temperature treatment. Furthermore, the high temperature treated M. vaginatus lost its ability to recover photosynthetic activity. On the contrary, although desiccation also led to the loss of photosynthetic activity in M. vaginatus, after rehydration in the light the fluorescence parameters including Fo, Fv and Fv/Fm could be well recovered within 12 h. It was concluded that desiccation could provide crust cyanobacteria M. vaginatus some protection from other stresses, such as high temperature demonstrated in this experiment. The combine of temperature change and precipitation pattern in the field provide a guarantee for the alternate metabolism and inactivity in crust cyanobacteria. That may be a very important strategy for the survival of crust cyanobacteria in high temperature regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号