首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trophic links between fermentation and methanogenesis of soil derived from a methane‐emitting, moderately acidic temperate fen (pH 4.5) were investigated. Initial CO2:CH4 production ratios in anoxic microcosms indicated that methanogenesis was concomitant to other terminal anaerobic processes. Methane production in anoxic microcosms at in situ pH was stimulated by supplemental H2–CO2, formate or methanol; supplemental acetate did not stimulate methanogenesis. Supplemental H2–CO2, formate or methanol also stimulated the formation of acetate, indicating that the fen harbours moderately acid‐tolerant acetogens. Supplemental monosaccharides (glucose, N‐acetylglucosamine and xylose) stimulated the production of CO2, H2, acetate and other fermentation products when methanogenesis was inhibited with 2‐bromoethane sulfonate 20 mM. Glucose stimulated methanogenesis in the absence of BES. Upper soil depths yielded higher anaerobic activities and also higher numbers of cells. Detected archaeal 16S rRNA genes were indicative of H2–CO2‐ and formate‐consuming methanogens (Methanomicrobiaceae), obligate acetoclastic methanogens (Methanosaetaceae) and crenarchaeotes (groups I.1a, I.1c and I.3). Molecular analyses of partial sequences of 16S rRNA genes revealed the presence of Acidobacteria, Nitrospirales, Clamydiales, Clostridiales, Alpha‐, Gamma‐, Deltaproteobacteria and Cyanobacteria. These collective results suggest that this moderately acidic fen harbours phylogenetically diverse, moderately acid tolerant fermenters (both facultative aerobes and obligate anaerobes) that are trophically linked to methanogenesis.  相似文献   

2.
The emission of methane (1.3 mmol of CH4 m−2 day−1), precursors of methanogenesis, and the methanogenic microorganisms of acidic bog peat (pH 4.4) from a moderately reduced forest site were investigated by in situ measurements, microcosm incubations, and cultivation methods, respectively. Bog peat produced CH4 (0.4 to 1.7 μmol g [dry wt] of soil−1 day−1) under anoxic conditions. At in situ pH, supplemental H2-CO2, ethanol, and 1-propanol all increased CH4 production rates while formate, acetate, propionate, and butyrate inhibited the production of CH4; methanol had no effect. H2-dependent acetogenesis occurred in H2-CO2-supplemented bog peat only after extended incubation periods. Nonsupplemented bog peat initially produced small amounts of H2 that were subsequently consumed. The accumulation of H2 was stimulated by ethanol and 1-propanol or by inhibiting methanogenesis with bromoethanesulfonate, and the consumption of ethanol was inhibited by large amounts of H2; these results collectively indicated that ethanol- or 1-propanol-utilizing bacteria were trophically associated with H2-utilizing methanogens. A total of 109 anaerobes and 107 hydrogenotrophic methanogens per g (dry weight) of bog peat were enumerated by cultivation techniques. A stable methanogenic enrichment was obtained with an acidic, H2-CO2-supplemented, fatty acid-enriched defined medium. CH4 production rates by the enrichment were similar at pH 4.5 and 6.5, and acetate inhibited methanogenesis at pH 4.5 but not at pH 6.5. A total of 27 different archaeal 16S rRNA gene sequences indicative of Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae were retrieved from the highest CH4-positive serial dilutions of bog peat and methanogenic enrichments. A total of 10 bacterial 16S rRNA gene sequences were also retrieved from the same dilutions and enrichments and were indicative of bacteria that might be responsible for the production of H2 that could be used by hydrogenotrophic methanogens. These results indicated that in this acidic bog peat, (i) H2 is an important substrate for acid-tolerant methanogens, (ii) interspecies hydrogen transfer is involved in the degradation of organic carbon, (iii) the accumulation of protonated volatile fatty acids inhibits methanogenesis, and (iv) methanogenesis might be due to the activities of methanogens that are phylogenetic members of the Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae.  相似文献   

3.
Following a summer drought, intact cores of peat soil from two cool temperate peatlands (a rain-fed bog and a groundwater-fed swamp) were exposed experimentally to three different water table levels. The goal was to examine recovery of anaerobic methanogenesis and to evaluate peat soil decomposition to methane (CH4), carbon dioxide (CO2), and dissolved organic carbon (DOC) upon rewetting. Methane emission from soils to the atmosphere was greatest (mean = 80 μmol m?2 s?1) when the entire peat core was rewetted quickly; emission was negligible at low water level and when peat cores were rewetted gradually. Rates of CO2 emission (mean = 1.0 μmol m?2 s?1) were relatively insensitive to water level. Concentrations of CH4 in soil air spaces suggest that onset of methanogenesis induces, but later represses, aerobic oxidation of CH4 above the water table. Concentrations of CO2 suggest production at the soil surface of swamp peat versus at greater depths in bog peat. Portions of peat soil incubated in vitro without oxygen (O2) exhibited a lag before the onset of methanogenesis, and the lag time was less in peat from the cores rewetted quickly. The inhibition of methanogenesis by the selective inhibitor 2-bromoethanesulfonic acid (BES) decreased CO2 production by 20 to 30% but resulted in an increase in concentrations of DOC by 2 to 5 times. The results show that methanogens in peat soils tolerate moderate drought, and recovery varies among different peat types. In peat soils, the inhibition of methanogenesis might enhance DOC availability.  相似文献   

4.
Phosphate Inhibits Acetotrophic Methanogenesis on Rice Roots   总被引:2,自引:1,他引:1       下载免费PDF全文
The contribution of acetate- and H2/CO2-dependent methanogenesis to total CH4 production was determined in excised washed rice roots by radiolabeling, methyl fluoride inhibition, and stable carbon isotope fractionation. Addition of ≥20 mM phosphate inhibited methanogenesis, which then was exclusively from H2/CO2. Otherwise, acetate contributed about 50 to 60% of the total methanogenesis, demonstrating that phosphate specifically inhibited acetotrophic methanogens on rice roots.  相似文献   

5.

Anaerobic microbial activity in northern peat soils most often results in more carbon dioxide (CO 2 ) production than methane (CH4) production. This study examined why methanogenic conditions (i.e., equal molar amounts of CH4 production and CO2 production) prevail so infrequently. We used peat soils from two ombrotrophic bogs and from two rheotrophic fens. The former two represented a relatively dry bog hummock and a wet bog hollow, and the latter two represented a forested fen and a sedge-dominated fen. We quantified gas production rates in soil samples incubated in vitro with and without added metabolic substrates (glucose, ethanol, H2/CO2). None of the peat soils exhibited methanogenic conditions when incubated in vitro for a short time (< 5 days) and without added substrates. Incubating some samples > 50 days without added substrates led to methanogenic conditions in only one of four experiments. The anaerobic CO2:CH4 production ratio ranged from 5:1 to 40:1 in peat soil without additions and was larger in samples from the dry bog hummock and forested fen than the wet bog hollow and sedge fen. Adding ethanol or glucose separately to peat soils led to methanogenic conditions within 5 days after the addition by stimulating rates of CH4 production, suggesting CH4 production from both hydrogenotrophic and acetoclastic methanogenesis. Our results suggest that methanogenic conditions in peat soils rely on a constant supply of easily decomposable metabolic substrates. Sample handling and incubation procedures might obscure methanogenic conditions in peat soil incubated in vitro.  相似文献   

6.
The pterin compound lumazine [2, 4-(1H, 3H)-pteridinedione] inhibited the growth of several methanogenic archaea completely at a concentration of ≤ 0.6 mM and was bacteriocidal for Methanobacterium thermoautotrophicum strain Marburg. In contrast, growth of two non-methanogenic archaea, several eubacteria, and one eukaryote was not strongly affected at much higher concentrations. In washed-cell suspensions, methanogenesis from H2 and CO2 by Mb. thermoautotrophicum or from H2 and methanol by Methanosarcina barkeri was inhibited by addition of lumazine. In cell-free extracts of Mb. thermoautotrophicum, H2-driven methane production from CO2 or CH3-S-CoM was completely inhibited by 0.6 mM lumazine. The results suggest that the compound may be useful in probing the methanogenesis pathway or in selecting against methanogens. Received: 30 January 1996 / Accepted 15 May 1996  相似文献   

7.
When grown in the absence of added sulfate, cocultures of Desulfovibrio desulfuricans or Desulfovibrio vulgaris with Methanobrevibacter smithii (Methanobacterium ruminantium), which uses H2 and CO2 for methanogenesis, degraded lactate, with the production of acetate and CH4. When D. desulfuricans or D. vulgaris was grown in the absence of added sulfate in coculture with Methanosarcina barkeri (type strain), which uses both H2-CO2 and acetate for methanogenesis, lactate was stoichiometrically degraded to CH4 and presumably to CO2. During the first 12 days of incubation of the D. desulfuricans-M. barkeri coculture, lactate was completely degraded, with almost stoichiometric production of acetate and CH4. Later, acetate was degraded to CH4 and presumably to CO2. In experiments in which 20 mM acetate and 0 to 20 mM lactate were added to D. desulfuricans-M. barkeri cocultures, no detectable degradation of acetate occurred until the lactate was catabolized. The ultimate rate of acetate utilization for methanogenesis was greater for those cocultures receiving the highest levels of lactate. A small amount of H2 was detected in cocultures which contained D. desulfuricans and M. barkeri until after all lactate was degraded. The addition of H2, but not of lactate, to the growth medium inhibited acetate degradation by pure cultures of M. barkeri. Pure cultures of M. barkeri produced CH4 from acetate at a rate equivalent to that observed for cocultures containing M. barkeri. Inocula of M. barkeri grown with H2-CO2 as the methanogenic substrate produced CH4 from acetate at a rate equivalent to that observed for acetate-grown inocula when grown in a rumen fluid-vitamin-based medium but not when grown in a yeast extract-based medium. The results suggest that H2 produced by the Desulfovibrio species during growth with lactate inhibited acetate degradation by M. barkeri.  相似文献   

8.
The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [13C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and 13C-labeling of CH4 verified that supplemental [13C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae.  相似文献   

9.
Flooded rice fields, which are an important source of the atmospheric methane, have become a model system for the study of interactions between various microbial processes. We used a combination of stable carbon isotope measurements and application of specific inhibitors in order to investigate the importance of various methanogenic pathways and of CH4 oxidation for controlling CH4 emission. The fraction of CH4 produced from acetate and H2/CO2 was calculated from the isotopic signatures of acetate, carbon dioxide (CO2) and methane (CH4) measured in porewater, gas bubbles, in the aerenchyma of the plants and/or in incubation experiments. The calculated ratio between both pathways reflected well the ratio determined by application of methyl fluoride (CH3F) as specific inhibitor of acetate‐dependent methanogenesis. Only at the end of the season, the theoretical ratio of acetate: H2 = 2 : 1 was reached, whereas at the beginning H2/CO2‐dependent methanogenesis dominated. The isotope discrimination was different between rooted surface soil and unrooted deep soil. Root‐associated CH4 production was mainly driven by H2/CO2. Porewater CH4 was found to be a poor proxy for produced CH4. The fraction of CH4 oxidised was calculated from the isotopic signature of CH4 produced in vitro compared to CH4 emitted in situ, corrected for the fractionation during the passage from the aerenchyma to the atmosphere. Isotope mass balances and in situ inhibition experiments with difluoromethane (CH2F2) as specific inhibitor of methanotrophic bacteria agreed that CH4 oxidation was quantitatively important at the beginning of the season, but decreased later. The seasonal pattern was consistent with the change of potential CH4 oxidation rates measured in vitro. At the end of the season, isotope techniques detected an increase of oxidation activity that was too small to be measured with the flux‐based inhibitor technique. If porewater CH4 was used as a proxy of produced CH4, neither magnitude nor seasonal pattern of in situ CH4 oxidation could be reproduced. An oxidation signal was also found in the isotopic signature of CH4 from gas bubbles that were released by natural ebullition. In contrast, bubbles stirred up from the bulk soil had preserved the isotopic signature of the originally produced CH4.  相似文献   

10.
Tropical forests are an important source of atmospheric methane (CH4), and recent work suggests that CH4 fluxes from humid tropical environments are driven by variations in CH4 production, rather than by bacterial CH4 oxidation. Competition for acetate between methanogenic archaea and Fe(III)‐reducing bacteria is one of the principal controls on CH4 flux in many Fe‐rich anoxic environments. Upland humid tropical forests are also abundant in Fe and are characterized by high organic matter inputs, steep soil oxygen (O2) gradients, and fluctuating redox conditions, yielding concomitant methanogenesis and bacterial Fe(III) reduction. However, whether Fe(III)‐reducing bacteria coexist with methanogens or competitively suppress methanogenic acetate use in wet tropical soils is uncertain. To address this question, we conducted a process‐based laboratory experiment to determine if competition for acetate between methanogens and Fe(III)‐reducing bacteria influenced CH4 production and C isotope composition in humid tropical forest soils. We collected soils from a poor to moderately drained upland rain forest and incubated them with combinations of 13C‐bicarbonate, 13C‐methyl labeled acetate (13CH3COO?), poorly crystalline Fe(III), or fluoroacetate. CH4 production showed a greater proportional increase than Fe2+ production after competition for acetate was alleviated, suggesting that Fe(III)‐reducing bacteria were suppressing methanogenesis. Methanogenesis increased by approximately 67 times while Fe2+ production only doubled after the addition of 13CH3COO?. Large increases in both CH4 and Fe2+ production also indicate that the two process were acetate limited, suggesting that acetate may be a key substrate for anoxic carbon (C) metabolism in humid tropical forest soils. C isotope analysis suggests that competition for acetate was not the only factor driving CH4 production, as 13C partitioning did not vary significantly between 13CH3COO? and 13CH3COO?+Fe(III) treatments. This suggests that dissimilatory Fe(III)‐reduction suppressed both hydrogenotrophic and aceticlastic methanogenesis. These findings have implications for understanding the CH4 biogeochemistry of highly weathered wet tropical soils, where CH4 efflux is driven largely by CH4 production.  相似文献   

11.
Microbial processes influencing methane emission from rice fields   总被引:7,自引:0,他引:7  
Irrigated rice fields are an important source of atmospheric methane. In order to improve our understanding of the controlling processes, we measured in situ CH4 emission and CH4 oxidation in an Italian rice field in 1998 and 1999, and studied CH4 production in soil and root samples. The CH4 emission rates were correlated with diurnal temperature variations and showed pronounced seasonal and interannual variations. The contribution of CH4 oxidation to total CH4 flux, determined by specific inhibition with difluoromethane, decreased from 40% at the beginning to zero at the end of the season. The stable carbon isotopic composition of the emitted CH4 also decreased. The CH4‐oxidizing bacteria probably became limited by nitrogen as indicated by the seasonal decrease of NH4+. Thus, CH4 oxidation had little effect on CH4 emission. Methane production on rice roots was relatively constant over the season. Methane production in soil slowly increased after flooding and was highest in the middle of the season. Pore water concentrations of CH4 showed a similar seasonal pattern. In 1999, CH4 production increased later in the season and reached lower rates than in 1998. An additional drainage in 1999 resulted in higher ferric iron concentrations, higher soil redox potentials and lower acetate concentrations. As a result, acetate‐utilizing methanogens were probably out‐competed by iron‐reducers so that a larger percentage of [2–14C]acetate was converted to 14CO2 instead of 14CH4. The residual CH4 production was relatively low and was mainly due to H2/CO2‐dependent methanogenesis. Experiments with radioactive bicarbonate and with methyl fluoride as specific inhibitor showed that the theoretical ratio of 7:3 of methanogenesis from acetate vs. H2/CO2 was only reached later in the season when total CH4 production was at the maximum. In conclusion, our results give a mechanistic explanation for the intraseasonal and interannual differences in CH4 emission.  相似文献   

12.
The mineralization of organic carbon to CH4 and CO2 inSphagnum-derived peat from Big Run Bog, West Virginia, was measured at 4 times in the year (February, May, September, and November) using anaerobic, peat-slurry incubations. Rates of both CH4 production and CO2 production changed seasonally in surface peat (0–25 cm depth), but were the same on each collection date in deep peat (30–45 cm depth). Methane production in surface peat ranged from 0.2 to 18.8 mol mol(C)–1 hr–1 (or 0.07 to 10.4 g(CH4) g–1 hr–1) between the February and September collections, respectively, and was approximately 1 mol mol(C)–1 hr–1 in deep peat. Carbon dioxide production in surface peat ranged from 3.2 to 20 mol mol(C)–1 hr–1 (or 4.8 to 30.3 g(CO2) g–1 hr–1) between the February and September collections, respectively, and was about 4 mol mol(C)–1 hr–1 in deep peat. In surface peat, temperature the master variable controlling the seasonal pattern in CO2 production, but the rate of CH4 production still had the lowest values in the February collection even when the peat was incubated at 19°C. The addition of glucose, acetate, and H2 to the peat-slurry did not stimulate CH4 production in surface peat, indicating that CH4 production in the winter was limited by factors other than glucose degradation products. The low rate of carbon mineralization in deep peat was due, in part, to poor chemical quality of the peat, because adding glucose and hydrogen directly stimulated CH4 production, and CO2 production to a lesser extent. Acetate was utilized in the peat by methanogens, but became a toxin at low pH values. The addition of SO4 2– to the peat-slurry inhibited CH4 production in surface peat, as expected, but surprisingly increased carbon mineralization through CH4 production in deep peat. Carbon mineralization under anaerobic conditions is of sufficient magnitude to have a major influence on peat accumulation and helps to explain the thin (< 2 m deep), old (> 13,000 yr) peat deposit found in Big Run Bog.  相似文献   

13.
Previous studies suggested that methanol and acetate were the likely methanogenic precursors in the cold Zoige wetland. In this study, the contribution of the two substances to methanogenesis and the conversion in Zoige wetland were analyzed. It was determined that methanol supported the highest CH4 formation rate in the enrichments of the soil grown with Eleocharis valleculosa, and even higher at 15°C than at 30°C; while hydrogenotrophic methanogenesis was higher at 30°C. Both methanol- and acetate-using methanogens were counted at the highest (107 g−1) in the soil, whereas methanol-using acetogens (108 g−1) were ten times more abundant than either methanol- or acetate-using methanogens. Both methanol and acetate were detected in the methanogenesis-inhibited soil samples, so that both could be the primary methanogenic precursors in E. valleculosa soil. However, the levels of methanol and acetate accumulated in 2-bromoethane-sulfonate (BES)- and CHCl3-treated soils were in reverse, i.e., higher methanol in CHCl3- and higher acetate in BES-treated soil, so that methanol-derived methanogenesis could be underestimated due to the consumption by acetogens. Analysis of the soil 16S rRNA genes revealed Acetobacterum bakii and Trichococcus pasteurii to be the dominant methanol-using acetogens in the soil, and a strain of T. pasteurii was isolated, which showed the high conversion of methanol to acetate at 15°C.  相似文献   

14.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

15.
Methanogenic activity was investigated in a petroleum hydrocarbon-contaminated aquifer by using a series of four push-pull tests with acetate, formate, H2 plus CO2, or methanol to target different groups of methanogenic Archaea. Furthermore, the community composition of methanogens in water and aquifer material was explored by molecular analyses, i.e., fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes amplified with the Archaea-specific primer set ARCH915 and UNI-b-rev, and sequencing of DNA from dominant DGGE bands. Molecular analyses were subsequently compared with push-pull test data. Methane was produced in all tests except for a separate test where 2-bromoethanesulfonate, a specific inhibitor of methanogens, was added. Substrate consumption rates were 0.11 mM day−1 for methanol, 0.38 mM day−1 for acetate, 0.90 mM day−1 for H2, and 1.85 mM day−1 for formate. Substrate consumption and CH4 production during all tests suggested that at least three different physiologic types of methanogens were present: H2 plus CO2 or formate, acetate, and methanol utilizers. The presence of 15 to 20 bands in DGGE profiles indicated a diverse archaeal population. High H2 and formate consumption rates agreed with a high diversity of methanogenic Archaea consuming these substrates (16S rRNA gene sequences related to several members of the Methanomicrobiaceae) and the detection of Methanomicrobiaceae by using FISH (1.4% of total DAPI [4′,6-diamidino-2-phenylindole]-stained microorganisms in one water sample; probe MG1200). Considerable acetate consumption agreed with the presence of sequences related to the obligate acetate degrader Methanosaeata concilii and the detection of this species by FISH (5 to 22% of total microorganisms; probe Rotcl1). The results suggest that both aceticlastic and CO2-type substrate-consuming methanogens are likely involved in the terminal step of hydrocarbon degradation, while methanogenesis from methanol plays a minor role. DGGE profiles further indicate similar archaeal community compositions in water and aquifer material. The combination of hydrogeological and molecular methods employed in this study provide improved information on the community and the potential activity of methanogens in a petroleum hydrocarbon-contaminated aquifer.  相似文献   

16.
Active methanogenesis from organic matter contained in soil samples from tundra wetland occurred even at 6 °C. Methane was the only end product in balanced microbial community with H2/CO2 as a substrate, besides acetate was produced as an intermediate at temperatures below 10°C. The activity of different microbial groups of methanogenic community in the temperature range of 6–28 °C was investigated using 5% of tundra soil as inoculum. Anaerobic microflora of tundra wetland fermented different organic compounds with formation of hydrogen, volatile fatty acids (VFA) and alcohols. Methane was produced at the second step. Homoacetogenic and methanogenic bacteria competed for such substrates as hydrogen, formate, carbon monoxide and methanol. Acetogens out competed methanogens in an excess of substrate and low density of microbial population. Kinetic analysis of the results confirmed the prevalence of hydrogen acetogenesis on methanogenesis. Pure culture of acetogenic bacteria was isolated at 6 °C. Dilution of tundra soil and supply with the excess of substrate disbalanced the methanoigenic microbial community. It resulted in accumulation of acetate and other VFA. In balanced microbial community obviously autotrophic methanogens keep hydrogen concentration below a threshold for syntrophic degradation of VFA. Accumulation of acetate- and H2/CO2-utilising methanogens should be very important in methanogenic microbial community operating at low temperatures.  相似文献   

17.
The activities of populations in complex anaerobic microbial communities that perform complete bioconversion of organic matter to CH4 and CO2 are reviewed. Species of eubacteria produce acetate, H2, and CO2 from organic substrates, and methanogenic species of archaebacteria transform the acetate, H2, and CO2 to CH4. The characteristics and activities of the methanogenic bacteria are described. The impact of the use of H2 by methanogens on the fermentations that produce acetate, H2, and CO2 and the importance of syntrophy in complete bioconversion are discussed.  相似文献   

18.
Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ∼0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable hypoxia and acidic pH. Anoxic incubations revealed enhanced formation of acetate and methane (CH4) from hydrogen (H2) and CO2 consistent with elevated CH4 and acetate levels in the mofette soil. 13CO2 mofette soil incubations showed high label incorporations with ∼512 ng 13C g (dry weight (dw)) soil−1 d−1 into the bulk soil and up to 10.7 ng 13C g (dw) soil−1 d−1 into almost all analyzed bacterial lipids. Incorporation of CO2-derived carbon into archaeal lipids was much lower and restricted to the first 10 cm of the soil. DNA-SIP analysis revealed that acidophilic methanogens affiliated with Methanoregulaceae and hitherto unknown acetogens appeared to be involved in the chemolithoautotrophic utilization of 13CO2. Subdivision 1 Acidobacteriaceae assimilated 13CO2 likely via anaplerotic reactions because Acidobacteriaceae are not known to harbor enzymatic pathways for autotrophic CO2 assimilation. We conclude that CO2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.  相似文献   

19.
In the absence of H2, Methanococcus spp. utilized pyruvate as an electron donor for methanogenesis. For Methanococcus voltae A3, Methanococcus maripaludis JJ1, and Methanococcus vannielii, typical rates of pyruvate-dependent methanogenesis were 3.4, 2.8, and 3.9 nmol min-1 mg-1 cell dry wt, respectively. These rates were 1–4% of the rates of H2-dependent methanogenesis. For M. voltae, the concentration of pyruvate required for one-half the maximum rate of methanogenesis was 7 mM, and pyruvate-dependent methanogenesis was linear for 3 days. Radiolabeled acetate was formed from [3-14C]pyruvate, and the stoichiometry of pyruvate consumed per acetate produced was 1.12±0.27. The stoichiometry of pyruvate consumed per CH4 produced was 3.64±0.34. These values are close to the expected values of 1 acetate and 4 CH4. Although 10–30% of total cell carbon could be obtained from exogenous pyruvate during growth with H2, pyruvate did not replace the nutritional requirement for acetate in Methanococcus voltae A3 or two acetate auxotrophs of Methanococcus maripaludis, JJ6 and JJ7. These results suggest that pyruvate was not oxidized in the presence of H2. The inability to oxidize pyruvate during H2-dependent methanogenesis would prevent a futile cycle of pyruvate oxidation and biosynthesis during autotrophic growth.  相似文献   

20.
Cell suspensions of H2/CO2-grown Sporomusa termitida catalyzed an H2-supported synthesis of acetate from CO2 at rates of about 1 mol acetate x h-1 x mg protein-1. Cells pre-grown on methanol, mannitol, lactate, or glycine also displayed H2-supported acetogenesis from CO2, although at rates 5–85% that of H2/CO2-grown cells. With methanol-grown cell suspensions: the presence of methanol greatly stimulated the rate of H2-supported conversion of 14CO2 to 14C-acetate (which became labeled mainly in the COOH-group); and like-wise the presence of H2 stimulated the conversion of 14CH3OH+CO2 to 14C-acetate (which became labeled mainlyan the CH3-group). Analogous stimulatory effects were observed for cell suspensions pre-grown on methanol + CO2+H2. Furthermore, when H2 (+CO2) was included as a growth substrate with either methanol or lactate: both substrates were used simultaneously; there was no diauxie in the growth of cells or in acetate production; and the molar growth yield of S. termitida was close to that predicted from summation of the yields observed when grown with each substrate alone. These data indicated that S. termitida can grow by mixotrophy, i.e. by the simultaneous use of H2/CO2 and organic compounds for energy. Results are discussed in light of the ability of H2/CO2 acetogens to outprocess methanogens in H2 consumption in the hindgut fermentation of wood-feeding termites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号