首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Microbial communities in decommissioned coal mines have the potential to promote methane generation. Here, two 1 m x 10 cm diameter column bioreactors designed to mimic an abandoned coal mine were monitored for a year, with zones of methanogenesis in the bottom, saturated waters and aerobic coal degradation and methane oxidation at the top. The resilience of aerobic methanotrophs to survive periods with low methane and oxygen conditions suggests methanotrophs may be useful in decreasing atmospheric methane fugitive emissions from decommissioned mines. When biogenic methane production from coal did occur, the rate was slow, ≤ 0.073 nmol CH4/g coal/day.  相似文献   

2.
The steep biogeochemical gradients near deep sea hydrothermal vents provide various niches for microbial life. Here we present biosignatures of such organisms enclosed in a modern and an ancient hydrothermal sulfide deposit (Turtle Pits, Mid-Atlantic Ridge, Recent; Yaman Kasy, Russia, Silurian). In the modern sulfide we found high amounts of specific bacterial and archaeal biomarkers with δ13C values between ?8 and ?37‰ VPDB. Our data indicate the presence of thermophilic members of the autotrophic Aquificales using the reductive tricarboxylic acid (rTCA) cycle as well as of methanogenic and chemolithoheterotrophic Archaea. In the ancient sample, most potential biomarkers of thermophiles were obscured by compounds derived from allochthonous organic matter (OM), except for an acyclic C40 biphytane and its C39 breakdown product. Both samples contained high amounts of unresolved complex mixtures (UCM) of hydrocarbons. Apparently, OM in the sulfides had to withstand high thermal stress, indicated by highly mature hopanes, steranes, and cheilanthanes with up to 41 carbon atoms.  相似文献   

3.
Cultivation of annual crops in the initial stage of reforestation has been commonly practiced in the tropics. In recent decades, however, cultivation of such areas has been discontinued, resulting in widespread abandoned settlements. In this article we used a former forest village settlement in Kenya, which had been cleared, cultivated and then abandoned, to study how natural vegetation recovers after such disturbances. Species richness, abundance, and composition of tree seedlings, saplings, adult trees, shrubs, and herbs were recorded in different zones, from a heavily degraded zone in the center of the settlement, through less disturbed transition zones (TZs), and in the surrounding secondary forest (SF). Species richness and abundance of tree seedlings, saplings, and adult trees increased gradually from the heavily degraded zone to the SF, whereas shrub and herb richness were the same for TZs and SF and abundance was lowest in the SF. Total species richness was highest in the SF. Some pioneer tree species were highly associated with the TZs, whereas sub‐canopy tree species were associated with the SF. A group of tree species were not particularly associated with any of the four zones. Thus, these species might have good potential as restoration species. The results of our study contribute to the knowledge of natural regeneration in general, and of individual species characterizing the different stages of recovery of abandoned settlements in particular. Such information is urgently needed in designing ecologically sound management strategies for restoring abandoned forest settlements in tropical areas.  相似文献   

4.
5.
6.
为探究酸性矿山排水生态系统不同环境中的微生物群落和功能,全面了解酸性矿山排水的形成和发展规律,采用高通量测序技术研究云南省蒙自某矿区酸矿水坑和周边溪水中的原核微生物群落组成,并结合样本理化特征分析影响群落结构的主要因素,进而解析菌群的环境功能。研究发现酸矿水坑中主要有广古菌门、变形菌门(包括α、γ和δ变形菌纲)、硝化螺菌门、厚壁菌门、放线菌门和酸杆菌门等类群,与周边溪水的群落结构具有明显差异。群落多样性与pH呈显著正相关,而热原体纲(Thermoplasmata)与pH呈负相关,可对群落结构起主导作用。酸矿水坑不同样本中均具有高丰度的亚铁原体属Ferroplasma (6.60%–86.34%),酸硫杆菌属Acidithiobacillus是酸矿水和沉积泥中主要的铁、硫氧化细菌,而专性铁氧化的钩端螺旋菌属Leptospirillum的丰度较低,铁卵形菌属Ferrovum几乎只存在于酸矿水中;此外,嗜酸或耐酸的异养菌广泛分布于酸矿水和沉积泥中,它们可促进铁、硫氧化菌的生长及催化矿石溶解。结果表明,pH通过影响微生物多样性和菌群分布而对酸性矿山排水环境微生物群落结构造成重大影响。  相似文献   

7.
Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐D and Δ15NC‐D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC‐D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Phe equation with the avian‐specific TDFGlu‐Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu‐Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.  相似文献   

8.
Stable carbon and nitrogen isotope ratios were used to posit the relative importance of microbial processes on energy pathways in an ephemeral, humic boreal wetland compared to four clearwater lakes in northwestern Ontario, Canada. In addition to algae and dipteran larvae, odonate larvae were sampled as these latter organisms are known to predate indiscriminately on smaller invertebrates and are thus likely to have average isotope ratios reflective of their habitats. Similarities in 13C and 15N values between lake insect larvae and emerged adults suggested that littoral foodwebs in these oligotrophic lakes may rely to a considerable degree upon terrestrial carbon. Wetland insect larvae and algae were depleted in both 13C and 15N compared to biota in lakes. Carbon isotope analysis implied a substantial presence of microbial respiration from decomposition in the humic wetland, whereas nitrogen isotope analysis suggested the prevalence of microbially modified nitrogen dynamics, including the possibilty of N-fixation.  相似文献   

9.
Abstract Anaerobic formation of dimethylsulfide (DMS) and methylmercaptan (MSH) in anoxic sulfide-containing slurries from marine and fresh water sediments was stimulated by addition of syringate (4-hydroxy,3,5,-dimethoxybenzoate) and 3,4,5,-trimethoxybenzoate. The release of DMS and MSH occurred during the consumption of the aromatic monomers and ceased after their depletion. DMS was the dominant methylated sulfur compound in fresh water sediments, in contrast to marine sediments where MSH was predominant. No production of volatile organic sulfur compounds was observed in slurries containing gallate (3,4,5,-trihydroxybenzoate) or in autoclaved controled. About 50–65% of the methoxy carbon could be accounted for by peak accumulation of DMS and MSH. In the saline sediments, large amounts of CH4 were formed during the period when DMS and MSH disappeared. About 65–70% of the methylcarbon of the volatile methylated sulfur compounds (VMSC) could be accounted for in the produced CH4. This study demonstrates a previously unknown microbial process by which DMS and MSH are formed during anaerobic decomposition of methoxylated aromatic compounds in marine and freshwater sediments.  相似文献   

10.
The aim of this research was to identify the sequence of degradation processes that leads to the selective enrichment of microorganisms involved in the degradation of carbon tetrachloride and chloroform under conditions of natural attenuation and lactic acid biostimulation. To this end, a comparative study using microcosm experiments was conducted to analyze these two scenarios. The authors used groundwater and sediment collected from a field site located at a petrochemical complex to create the microcosms. Chemical, compound-specific isotope and microbial analyses were performed. A significant finding of this work was the abiotic degradation of carbon tetrachloride. Another result was the identification of biotic reductive dechlorination of chloroform by a bacterium of the Clostridiales order. This study showed that biostimulation with lactic acid produced faster degradation rates of carbon tetrachloride and chloroform. Lactic acid acted as an electron donor and promoted a decrease in the concentration of other electron acceptors such as nitrate and sulfate, which competed with chloromethanes. Thus, biostimulation could be an efficient remediation strategy for sites contaminated with chloromethanes, especially when a site's complex pollution history results in chemical background concentrations that are high in compounds that could potentially reduce natural attenuation.  相似文献   

11.
Sediment and water samples representing a pollution gradient in a long, narrow lake polluted at one end by heavy metals, arsenic, and acid drainage from mine tailings, together with samples from an unpolluted reference lake, were analyzed to determine effects of pollutants on the microbial community of the polluted lake. Ribosomal ribonucleic acid, fatty acid, and phospholipid analyses, along with assays of CO2 production, denitrification, and enzyme activities, were performed to characterize the microflora; and environmental conditions were defined by various physicochemical analyses, including determination of bioavailable metal species. Mine waste pollution fostered the growth of Holophagal Acidobacteria, green sulphur bacteria, and α-Proteobacteria but inhibited numerous other types of microorganisms, reducing the overall productivity, biomass, and biodiversity of the microflora. The beneficial effects imply toleration of pollutants, suppression of competing or antagonistic species, and utilization of biogenic sulphide; and the toxic effects are attributable to bioavailable metals, arsenic, and sulphuric acid produced by oxidation of sulphides. The bioavailability and toxicity of sediment-bound metals were evidently increased by acidification, elevation of sediment Eh, and inhibition of metal-immobilizing bacteria by pollutants but were decreased by metal-scavenging oxyhydroxides, sulphide, and organic matter. Metal toxicity also depended on specific metal properties (e.g., electronegativity), providing a basis for inferring mechanisms of toxicity and oxidation states of metals and explaining differences in relative toxicity. The pollutants harmed the ecosystem as a whole by inhibiting microorganisms that performed crucial ecological functions, notably oxygen-releasing photosynthesis, decomposition and humification of organic matter, nutrient recycling, and control of metal availability.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号