首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work identified ABCA1 as the major regulator of plasma HDL-cholesterol responsible for the removal of excess choline-phospholipids and cholesterol from peripheral cells and tissues. ABCA1 function may depend on the association with heteromeric proteins and to identify these candidates a human liver yeast two-hybrid library was screened with the carboxyterminal 144 amino acids of ABCA1. Beta2-syntrophin was found to interact with ABCA1 and the C-terminal five amino acids of ABCA1 proned to represent a perfect tail for binding to syntrophin PDZ domains. Immunoprecipitation further confirmed the association of ABCA1 and beta2-syntrophin and in addition utrophin, known to couple beta2-syntrophin and its PDZ ligands to the F-actin cytoskeleton, was identified as a constituent of this complex. ABCA1 in the plasmamembrane of human macrophages was found to be partially associated with Lubrol rafts and effluxed choline-phospholipids involve these microdomains. Beta2-syntrophin does not colocalize in these rafts indicating that beta2-syntrophin may participate in the retaining of ABCA1 in cytoplasmic vesicles and for the targeting of ABCA1 to plasmamembrane microdomains when ABCA1 is released from beta2-syntrophin.  相似文献   

2.
3.
ATP-binding cassette transporter A1 (ABCA1) plays a critical role in HDL cholesterol metabolism, but the mechanism by which it transports lipid across membranes is poorly understood. Because growing evidence implicates accessory proteins in this process, we developed a method by which proteins interacting with the intact transporter could be identified. cDNAs encoding wild-type ABCA1 and a mutant lacking the C-terminal PDZ binding motif of ABCA1 were transfected into 293 cells, and the expressed proteins were solubilized using detergent conditions (0.75% CHAPS, 1 mg/ml phosphatidylcholine) predicted to retain high affinity protein-protein interactions. Proteins that co-purified with ABCA1 on an antibody affinity column were identified by liquid chromatographymass spectrometric analysis. A novel interaction with the PDZ protein beta1-syntrophin was identified using this approach, and this interaction was confirmed in human THP-1 macrophages and in mouse liver. Small interference RNA inhibition of beta1-syntrophin expression reduced cholesterol efflux from primary skin fibroblasts by 50% while decreasing efflux 30% in bone marrow-derived macrophages. Inhibition of beta1-syntrophin decreased ABCA1 protein levels, whereas overexpression of beta1-syntrophin increased ABCA1 cell-surface expression and stimulated efflux to apolipoprotein A-I. These findings indicate that beta1-syntrophin acts through a class-I PDZ interaction with the C terminus of ABCA1 to regulate the cellular distribution and activity of the transporter. The approach used to identify beta1-syntrophin as an ABCA1-binding protein should prove useful in elucidating other protein interactions upon which ABCA1 function depends.  相似文献   

4.
ATP-binding cassette transporter A1 (ABCA1) is a major regulator of cellular cholesterol and phospholipid homeostasis. Its function has not been fully characterized and may depend on the association with additional proteins. To identify ABCA1-interacting proteins a human liver yeast two-hybrid library was screened with the 144 C-terminal amino acids of ABCA1. Fas-associated death domain protein (FADD) was identified to bind to ABCA1, and this interaction was confirmed by pull-down assays and co-immunoprecipitations. Recombinant expression of a dominant negative form of FADD or the C terminus of ABCA1 in the human hepatoma cell line HepG2 markedly reduced the transfer of phospholipids to apoA-I. This indicates that the binding of additional proteins, one of them being full-length FADD, is required for ABCA1 function. The association of FADD with ABCA1 provides an unexpected link between high density lipoprotein metabolism and an adaptor molecule mainly described in death receptor signal transduction.  相似文献   

5.
Apolipoproteins, such as apolipoprotein A-I (apoA-I), can stimulate cholesterol efflux from cells expressing the ATP binding cassette transporter A1 (ABCA1). The nature of the molecular interaction between these cholesterol acceptors and ABCA1 is controversial, and models suggesting a direct protein-protein interaction or indirect association have been proposed. To explore this issue, we performed competition binding and chemical cross-linking assays using six amphipathic plasma proteins and an 18 amino acid amphipathic helical peptide. All seven proteins stimulated lipid efflux and inhibited the cross-linking of apoA-I to ABCA1. Cross-linking of apoA-I to ABCA1 was saturable and occurred at high affinity (Kd of 7.0 +/- 1.9 nM), as was cross-linking of apoA-II. After binding to ABCA1, apoA-I rapidly dissociated (half-life of 25 min) from the complex and was released back into the medium. A mutant form of ABCA1 (W590S) that avidly binds apoA-I but fails to promote cholesterol efflux released apoA-I with similar kinetics but without transfer of cholesterol to apoA-I. Thus, a high-affinity, saturable, protein-protein interaction occurs between ABCA1 and all of its amphipathic protein ligands. Dissociation of the complex leads to the cellular release of cholesterol and the apolipoprotein. However, dissociation is not dependent on cholesterol transfer, which is a clearly separable event, distinguishable by ABCA1 mutants.  相似文献   

6.
7.
The stimulation of cellular cholesterol and phospholipid efflux by apolipoprotein A-I is mediated by the activity of the ATP-binding cassette transporter A1 (ABCA1). Individuals with Tangier disease harbor loss-of-function mutations in this transporter that have proven useful in illuminating its activity. Here, we analyze a mutation that deletes the last 46 residues of the 2261 amino acid transporter (Delta46) and eliminates its lipid efflux. As the final four amino acids of the C terminus represent a putative PDZ-binding motif, we initially characterized deletion mutants lacking only these residues. Although a moderate decline in lipid efflux was detected, this decline was not as profound as that seen in the Delta46 mutant. Subsequent systematic analysis of the ABCA1 C terminus revealed a novel, highly conserved motif (VFVNFA) that was required for lipid efflux. Alteration of this motif, which is present in some but not all members of the ABCA family, did not prevent trafficking of the transporter to the plasma membrane but did eliminate its binding of apoA-I. Chimeric transporters, generated by substituting the C termini of either ABCA4 or ABCA7 for the endogenous terminus, demonstrated that ABCA1 could stimulate cholesterol efflux without its PDZ-binding motif but not without the VFVNFA motif. When a peptide containing the VFVNFA sequence was introduced into ABCA1-expressing cells, ABCA1-mediated lipid efflux was also markedly inhibited. These results indicate that the C-terminal VFVNFA motif of ABCA1 is essential for its lipid efflux activity. The data also suggest that this motif participates in novel protein-protein interactions that may be shared among members of the ABCA family.  相似文献   

8.
9.
10.
The ATP-binding cassette transporter A1 (ABCA1) facilitates the cellular release of cholesterol and choline-phospholipids to apolipoprotein A-I (apoA-I) and several studies indicate that vesicular transport is associated with ABCA1 function. Syntaxins play a major role in vesicular fusion and have also been demonstrated to interact with members of the ABC-transporter family. Therefore, we focused on the identification of syntaxins that directly interact with ABCA1. The expression of syntaxins and ABCA1 in cultured human monocytes during M-CSF differentiation and cholesterol loading was investigated and syntaxins 3, 6, and 13 were found induced in foam cells together with ABCA1. Immunoprecipitation experiments revealed a direct association of syntaxin 13 and full-length ABCA1, whereas syntaxin 3 and 6 failed to interact with ABCA1. The colocalization of ABCA1 and syntaxin 13 was also shown by immunofluorescence microscopy. Silencing of syntaxin 13 by small interfering RNA (siRNA) led to reduced ABCA1 protein levels and hence to a significant decrease in apoA-I-dependent choline-phospholipid efflux. ABCA1 is localized in Lubrol WX-insoluble raft microdomains in macrophages and syntaxin 13 and flotillin-1 were also detected in these detergent resistant microdomains along with ABCA1. Syntaxin 13, flotillin-1, and ABCA1 were identified as phagosomal proteins, indicating the involvement of the phagosomal compartment in ABCA1-mediated lipid efflux. In addition, the uptake of latex phagobeads by fibroblasts with mutated ABCA1 was enhanced when compared with control cells and the recombinant expression of functional ABCA1 normalized the phagocytosis rate in Tangier fibroblasts. It is concluded that ABCA1 forms a complex with syntaxin 13 and flotillin-1, residing at the plasma membrane and in phagosomes that are partially located in raft microdomains.  相似文献   

11.
Synthetic peptides were used in this study to identify a structural element of apolipoprotein (apo) A-I that stimulates cellular cholesterol efflux and stabilizes the ATP binding cassette transporter A1 (ABCA1). Peptides (22-mers) based on helices 1 (amino acids 44-65) and 10 (amino acids 220-241) of apoA-I had high lipid binding affinity but failed to mediate ABCA1-dependent cholesterol efflux, and they lacked the ability to stabilize ABCA1. The addition of helix 9 (amino acids 209-219) to either helix 1 (creates a 1/9 chimera) or 10 (9/10 peptide) endowed cholesterol efflux capability and ABCA1 stabilization activity similar to full-length apoA-I. Adding helix 9 to helix 1 or 10 had only a small effect on lipid binding affinity compared with the 22-mer peptides, indicating that helix length and/or determinants on the polar surface of the amphipathic alpha-helices is important for cholesterol efflux. Cholesterol efflux was specific for the structure created by the 1/9 and 9/10 helical combinations, as 33-mers composed of helices 1 and 3 (1/3), 2/9, and 4/9 failed to mediate cholesterol efflux in an ABCA1-dependent manner. Transposing helices 9 and 10 (10/9 peptide) did not change the class Y structure, hydrophobicity, or amphiphilicity of the helical combination, but the topography of negatively charged amino acids on the polar surface was altered, and the 10/9 peptide neither mediated ABCA1-dependent cholesterol efflux nor stabilized ABCA1 protein. These results suggest that a specific structural element possessing a linear array of acidic residues spanning two apoA-I amphipathic alpha-helices is required to mediate cholesterol efflux and stabilize ABCA1.  相似文献   

12.
13.
Probucol has been shown to inhibit the release of cellular lipid by helical apolipoprotein and thereby to reduce plasma high density lipoprotein. We attempted to explore the underlying mechanism for this effect in human fibroblast WI-38. Probucol inhibited the apoA-I-mediated cellular lipid release and binding of apoA-I to the cells in a dose-dependent manner. It did not influence cellular uptake of low density lipoprotein, transport of cholesterol to the cell surface whether de novo synthesized or delivered as low density lipoprotein, and overall cellular content of cholesterol, although biosynthesis of lipids from acetate was somewhat increased. Probucol did not affect the mRNA level of ABCA1, and ABCA1 was recovered along with marker proteins for plasma membrane regardless of the presence of probucol. However, the protein level of ABCA1 increased, and the rate of its decay in the presence of cycloheximide was slower in the probucol-treated cells. ABCA1 in the probucol-treated cells was resistant to digestion by calpain but not by trypsin. We concluded that probucol inactivates ABCA1 in the plasma membrane with respect to its function in mediating binding of and lipid release by apolipoprotein and with respect to proteolytic degradation by calpain.  相似文献   

14.
15.
16.
HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using co-immunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope.  相似文献   

17.
Syntrophins are components of the dystrophin-glycoprotein complex of the plasma membrane in muscular and neuronal cells, and recruit signaling proteins such as neuronal nitric oxide synthase via their multiple protein-protein interaction motifs. In this study, we found that alpha1-syntrophin binds to various subtypes of guanine nucleotide-binding protein alpha subunits (Galpha). A pull-down analysis using full-length recombinant alpha1-syntrophin and MS analysis showed that alpha1-syntrophin was coprecipitated with several isoforms of Galpha proteins in addition to known binding partners such as dystrobrevin and neuronal nitric oxide synthase. Further analysis using recombinant Galpha isoforms showed that alpha1-syntrophin associates with at least Galphai, Galphao, Galphas and Galphaq subtypes. The region of alpha1-syntrophin required for its interaction with Galphas was determined as the N-terminal half of the first pleckstrin homology domain. In addition, the syntrophin unique domain of alpha1-syntrophin was suggested to contribute to this interaction. In COS-7 cells, downregulation of alpha1-syntrophin by RNAi resulted in enhanced cAMP production and cAMP response element-binding protein phosphorylation induced by isoproterenol treatment. These results suggest that alpha1-syntrophin provides a scaffold for the Galpha family of heterotrimeric G proteins in the brain to regulate the efficiency of signal transduction evoked by G-protein-coupled receptors.  相似文献   

18.
Neuronal nitric-oxide synthase (nNOS) has a PSD-95/Dlg/ZO-1 (PDZ) domain that can interact with multiple proteins. nNOS has been known to interact with PSD-95 and a related protein, PSD-93, in brain and with alpha1-syntrophin in skeletal muscle in mammals. In this study, we have purified an nNOS-interacting protein from bovine brain using an affinity column made of Sepharose conjugated with glutathione S-transferase-rat nNOS fusion protein and identified it as alpha1-syntrophin by microsequencing. Immunostaining of primary cultures of rat embryonic brain neuronal cells with antibodies against these proteins showed that nNOS and alpha1-syntrophin were colocalized in neuronal cell bodies and neurites. Immunohistochemical analysis indicated that the nNOS- and alpha1-syntrophin-like immunoreactive substances were highly expressed in the rat hypothalamic suprachiasmatic nucleus (SCN) and paraventricular nucleus. In the SCN, nNOS- and alpha1-syntrophin-like immunoreactive substances were colocalized in the same neurons as detected by confocal microscopy. These results indicate that nNOS in brain interacts with alpha1-syntrophin in specific neurons of the SCN and paraventricular nucleus and that this interaction might play a physiological role in functions of these neurons.  相似文献   

19.
This study was undertaken to identify the alpha-helical domains of human apoE that mediate cellular cholesterol efflux and HDL assembly via ATP-binding cassette transporter A1 (ABCA1). The C-terminal (CT) domain (residues 222-299) of apoE was found to stimulate ABCA1-dependent cholesterol efflux in a manner similar to that of intact apoE2, -E3, and -E4 in studies using J774 macrophages and HeLa cells. The N-terminal (NT) four-helix bundle domain (residues 1-191) was a relatively poor mediator of cholesterol efflux. On a per molecule basis, the CT domain stimulated cholesterol efflux with the same efficiency (Km approximately 0.2 microM) as intact apoA-I and apoE. Gel filtration chromatography of conditioned medium from ABCA1-expressing J774 cells revealed that, like the intact apoE isoforms, the CT domain promoted the assembly of HDL particles with diameters of 8 and 13 nm. Removal of the CT domain abolished the formation of HDL-sized particles, and only larger particles eluting in the void volume were formed. Studies with CT truncation mutants of apoE3 and peptides indicated that hydrophobic helical segments governed the efficiency of cellular cholesterol efflux and that conjoined class A and G amphipathic alpha-helices were required for optimal efflux activity. Collectively, the data suggest that the CT lipid-binding domain of apoE encompassing amino acids 222-299 is necessary and sufficient for mediating ABCA1 lipid efflux and HDL particle assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号