首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors describe different properties of brain mitochondrial and cell sap alanine aminotransferase. They showed that the mitochondrial enzyme was inhibited by maleate, chlorides, acetate and phosphate with a high ionic strength (over 1.8), that its pH optimum lay between 7.5 and 8.5, that it was thermolabile at over 40 degrees C and that it was salted out from solutions with ammonium sulphate at 0.6--0.8 saturation. The activity of the cell sap enzyme was inhibited by phosphate at an ionic strength of only 0.12, less markedly by maleate and not at all by chlorides and acetate; its pH optimum was about 8, it was thermostable up to 60 degrees C and was precipitated from ammonium sulphate solution at between 0.35 and 0.6 saturation. The authors conclude from their results that two different alanine aminotransferase enzymes are present in the CNS.  相似文献   

2.
1. A reversible transamination reaction between L-glutamate and pyruvate, or L-alanine and 2-oxoglutarate, takes place in the mitochondrial and cell sap fractions of rat brain. 2. The maximum rate of the transamination reaction in both subfractions was observed in the presence of a keto- substrate concentration of 2.5 mM only, but an amino- donor concentration of 20 mM. 3. The apparent Menten-Michaelis constants for pyruvate and 2-oxoglutarate were of a 10(-4) M and for L-glutamate and L-alanine of a 10(-3) M order and were approximately the same for both fractions. 4. The ratio of the initial rate of the L-alanine + 2-oxoglutarate to the L-glutamate + pyruvate transamination reaction in the cell sap and mitochondrial fractions amounted to up to 2. 5. The apparent equilibrium constant derived from the Haldane equation was 7.01 for cell sap alanine aminotransferase and 4 for the mitochondrial enzyme. 6. Increasing pyridoxal-5'-phosphate concentrations in the incubation medium were accompanied by only non-significant stimulation of alanine aminotransferase activity in the mitochondrial and cell sap fractions. 7. A comparison of the kinetic data obtained on mitochondrial and cell sap alanine aminotransferases in vitro with the actual substrate concentrations in the transamination reaction in nervous tissue in vivo indicates that the direction of the transamination reaction in situ seems to be determined simply by compartmentation and by dynamic changes in amino- and keto- substrates in the mitochondrial and cell sap spaces.  相似文献   

3.
1. The distribution of l-alanine-glyoxylate aminotransferase activity between subcellular fractions prepared from rat liver homogenates was investigated. The greater part of the homogenate activity (about 80%) was recovered in the ;total-particles' fraction sedimented by high-speed centrifugation and the remainder in the cytosol fraction. 2. Subfractionation of the particles by differential sedimentation and on sucrose density gradients revealed a specific association between the aminotransferase and the mitochondrial enzymes glutamate dehydrogenase and rhodanese. 3. The aminotransferase activities in the cytosol and the mitochondria are due to isoenzymes. The solubilized mitochondrial enzyme has a pH optimum of 8.6, an apparent K(m) of 0.24mm with respect to glyoxylate and is inhibited by glyoxylate at concentrations above 5mm. The cytosol aminotransferase shows no distinct pH optimum (over the range 7.0-9.0) and has an apparent K(m) of 1.11mm with respect to glyoxylate; there is no evidence of inhibition by glyoxylate. 4. The mitochondrial location of the bulk of the rat liver l-alanine-glyoxylate aminotransferase activity is discussed in relation to a pathway for gluconeogenesis involving glyoxylate.  相似文献   

4.
Abstract— Alanine aminotransferase activity in subcellular fractions of rat brains was investigated during ontogenic development. The activity rose from the prenatal period until adulthood, the highest increase being observed during the period of morphological metabolic and functional maturation of the brain. The rise of the total activity was due predominantly to a rise in the activity of the cytosblic enzyme; the activity of the mitochondrial enzyme did not change markedly during ontogeny. CI-ions and elevated temperature (55°C) inhibited the activity only of the mitochondrial enzyme. Raised temperature stimulated the activity of the cytosolic enzyme while CI-ions did not influence its activity. Our results indicate that 2 alanine aminotransferase isoenzlmes are already present in the rat brain in the prenatal period. It is assumed that the cytosolic enzyme is involved in the regulation of tissue glycol)sis and alanine formation, while the mitochondrial enzyme plays a role in the amino nitrogen transport between mitochondria and cytosol.  相似文献   

5.
According to a sucrose density gradient analysis of cell organelles from homogenates of green leaves of rye, wheat and pea seedlings glutamate-pyruvate aminotransferase was predominantly localized in the leaf microbodies (peroxisomes; 90%) and to a minor extent in the mitochondria (10%) but completely absent from chloroplasts. In etiolated rye leaves the distribution of the enzyme was similar. In other non-green tissues glutamate-pyruvate aminotransferase was predominantly associated with the mitochondria but also present in the microbodies of dark-grown pea roots and in the glyoxysomes of Ricinus endosperm. In the microbodies isolated from potato tubers the enzyme was not detectable. Glutamate-pyruvate aminotransferase activity was not associated with the proplastid fractions of the non-green tissues. The distribution of glutamate-oxaloacetate aminotransferase was different from that of glutamate-pyruvate aminotransferase. Glutamate-oxaloacetate aminotransferase was found in chloroplasts, proplastids, mitochondria, microbodies and in the supernatant. Evidence is presented that glutamate-pyruvate and glutamate-glyoxylate aminotransferase activities were catalyzed by the same enzyme. Both activities showed the same organelle distribution on sucrose gradients and both were eluted at the same salt concentration from DEAE-cellulose. By chromatography of preparations from rye leaf extracts on DEAE-cellulose two forms of glutamate-pyruvate (glyoxylate) aminotransferase were separated. The major fraction eluting at a low salt concentration was identified as peroxisomal form and the minor fraction eluting at a higher salt concentration was identified as a mitochondrial form. Both the glutamate-glyoxylate and the glutamate-pyruvate aminotransferase activities of the peroxisomal as well as of the mitochondrial forms of the enzyme were strongly (about 80%) inhibited by the presence of 10 mM glycidate, previously described as an inhibitor of glutamate-glyoxylate aminotransferase in tobacco tissue. Pig heart glutamate-pyruvate aminotransferase exhibited no glutamate-glyoxylate aminotransferase activity and was only slightly inhibited by glycidate. The development of glutamate-pyruvate aminotransferase activity in the leaves of rye seedlings was strongly increased in the light, relative to dark-grown seedlings, and very similar to that of catalase activity while the development of glutamate-oxaloacetate aminotransferase was, in close coincidence with the behavior of leaf growth, only slightly enhanced by light. It is discussed that in green leaves an extrachloroplastic synthesis of alanine is of considerable advantage for the metabolic flow during photosynthesis.  相似文献   

6.
The subcellular distribution of asparagine:oxo-acid aminotransferase (EC 2.6.1.14) in rat liver was examined by centrifugation in a sucrose density gradient. About 30% of the homogenate activity after the removal of the nuclear fraction was recovered in the peroxisomes, about 56% in the mitochondria, and the remainder in the soluble fraction from broken peroxisomes. The mitochondrial asparagine aminotransferase had identical immunological properties with the peroxisomal one. Glucagon injection to rats resulted in the increase of its activity in the mitochondria but not in the peroxisomes. Immunological evidence was obtained that the enzyme was identical with alanine:glyoxylate aminotransferase 1 (EC 2.6.1.44) which had been reported to be identical with serine:pyruvate aminotransferase (EC 2.6.1.51) (Noguchi, T. (1987) in Peroxisomes in Biology and Medicine (Fahimi, H. D., and Sies, H., eds) pp. 234-243, Springer-Verlag, Heidelberg). The same results as described above were obtained with mouse liver. All of alanine:glyoxylate aminotransferase 1 in livers of mammals other than rodents, which cross-react with the antibody against rat liver alanine:glyoxylate aminotransferase 1, had no asparagine aminotransferase activity.  相似文献   

7.
Summary The removal of the outer mitochondrial membrane and hence of constituents of the intermembrane space in rat-liver mitochondria using digitonin showed that phosphate-dependent glutaminase, alanine and aspartate aminotransferase were localized in the mitoplasts. Further fractionation of mitoplasts following their sonication resulted in 90% of glutaminase, 98% of alanine aminotransferase and 48% of aspartate aminotransferase being recovered in the soluble fraction while the remainder of each enzyme was recovered in the sonicated vesicles fraction. These results indicated that glutaminase and alanine aminotransferase were soluble matrix enzymes, the little of each enzyme recovered in the sonicated vesicles fraction being probably due to entrapment in the vesicles. Aspartate aminotransferase had dual localization, in the inner membrane and matrix with the high specific activity in sonicated vesicles confirming its association with the membrane. Activation experiments suggested that the membrane-bound enzyme was localized on the inner side of the inner mitochondrial membrane.  相似文献   

8.
When rat liver mitochondria that had imported a synthetic extrapeptide of ornithine aminotransferase (composed of 34 amino acids) were incubated at 25 degrees C, the extrapeptide in their matrix was degraded inside the mitochondria. The degradation of the extrapeptide did not depend on energy either inside or outside the mitochondria. The degrading activity was found exclusively in the mitochondrial soluble fraction and only inhibited by N-ethylmaleimide of eight protease-inhibitors tested. These observations show that the extrapeptide cleaved from the precursor of the mitochondrial protein in the mitochondria is degraded by some ATP-independent proteases inside the mitochondria.  相似文献   

9.
Rat liver 3-ketoacyl-CoA thiolase, a mitochondrial matrix enzyme which catalyzes a step of fatty acid beta-oxidation, was synthesized in a rabbit reticulocyte lysate cell-free system. The in vitro product was apparently the same in molecular size and charge as the subunit of the mature enzyme. The enzyme synthesized in vitro was transported into isolated rat liver mitochondria in an energy-dependent manner. In pulse experiments with isolated rat hepatocytes at 37 degrees C, the radioactivity of the newly synthesized enzyme in the cytosolic fraction remained essentially unchanged during 5-20 min of incubation, whereas that of the enzyme in the particulate fraction increased with time during the incubation. The pulse-labeled enzyme disappeared with an apparent half-life of less than 3 min from the cytosolic fraction, in pulse-chase experiments. Purified 3-ketoacyl-CoA thiolase inhibited the mitochondrial uptake and processing of the precursors of the other matrix enzymes, ornithine carbamoyltransferase, medium-chain acyl-CoA dehydrogenase and acetoacetyl-CoA thiolase. These results indicate that 3-ketoacyl-CoA thiolase has an internal signal which is recognized by the mitochondria and suggest that this enzyme and the three others are transported into the mitochondria by a common pathway.  相似文献   

10.
Muscle branched-chain amino acid metabolism is coupled to alanine formation via branched-chain amino acid aminotransferase and alanine aminotransferase, but the subcellular distributions of these and other associated enzymes are uncertain. Recovery of branched-chain aminotransferase in the cytosol fraction after differential centrifugation was shown to be accompanied by leakage of mitochondrial-matrix marker enzymes. By using a differential fractional extraction procedure, most of the branched-chain aminotransferase activity in rat muscle was located in the mitochondrial compartment, whereas alanine aminotransferase was predominantly in the cytosolic compartment. Phosphoenolpyruvate carboxykinase, like aspartate aminotransferase, was approximately equally distributed between these subcellular compartments. This arrangement necessitates a transfer of branched-chain amino nitrogen and carbon from the mitochondria to the cytosol for alanine synthesis de novo to occur. In incubations of hemidiaphragms from 48 h-starved rats with 3mM-valine or 3mM-glutamate, the stimulation of alanine release was inhibited by 69% by 1 mM-aminomethoxybut-3-enoate, a selective inhibitor of aspartate aminotransferase. Leucine-stimulated alanine release was unaffected. These data implicate aspartate aminotransferase in the transfer of amino acid carbon and nitrogen from the mitochondria to the cytosol, and suggest that oxaloacetate, via phosphoenolpyruvate carboxykinase, can serve as an intermediate on the route of pyruvate formation for muscle alanine synthesis.  相似文献   

11.
We examined the effect of the pyridoxal 5'-phosphate (PLP) cofactor on the activity and stability of the psychrophilic alanine racemase, having a high catalytic activity at low temperature, from Bacillus psychrosaccharolyticus at high temperatures. The decrease in the enzyme activity at incubation temperatures over 40 degrees C was consistent with the decrease in the amount of bound PLP. Unfolding of the enzyme at temperatures above 40 degrees C was suppressed in the presence of PLP. In the presence of 0.125 mM PLP, the specific activity of the psychrophilic enzyme was higher than that of a thermophilic alanine racemase, having a high catalytic activity at high temperature, from Bacillus stearothermophilus even at 60 degrees C.  相似文献   

12.
Immunological distances of alanine: glyoxylate aminotransferase 1 (serine:pyruvate aminotransferase) in mitochondria or peroxisomes from eight different mammalian liver were determined with rabbit anti-serum against the mitochondrial enzyme of rat liver by microcomplement fixation. Results suggest that heterotopic alanine:glyoxylate aminotransferase 1 are orthologous proteins and their subcellular localization and substrate specificity changed during rapid molecular evolution.  相似文献   

13.
The inactivation of 2-oxoglutarate dehydrogenase complex by freeze-thawing was examined along with alterations of membrane phospholipids, in order to elucidate the mechanism of freezing injury in mitochondria. The dehydrogenase complex activity in slowly frozen and thawed mitochondria decreased to 70% as compared to intact mitochondria and further decreased during incubation. This inactivation during incubation was temperature dependent, i.e., at temperatures up to 25 degrees C there was a slight decrease, while at higher temperatures there was a marked decrease in the dehydrogenase complex activity. Simultaneously, there was a significant accumulation of free fatty acids, generated from mitochondrial phospholipids, which inhibited 2-oxoglutarate dehydrogenase and subsequently enzyme complex activity. Oxoglutarate dehydrogenase activity in mitochondria was markedly inhibited by exogenous phospholipase A, and this inhibition was partially prevented with bovine serum albumin. Furthermore, when intrinsic phospholipase A was either inhibited or stimulated, there was a respective decrease or increase in the enzyme complex inactivation. The activity of the purified enzyme complex decreased slightly after slow freezing, but remained constant even when incubated at temperatures up to 32 degrees C. However, the activity of this enzyme complex was markedly reduced when incubated either in the presence of venom phospholipase A or with exogenous fatty acid. The relationship between inactivation of the 2-oxoglutarate dehydrogenase complex, phospholipase A activation and production of free fatty acids in frozen and thawed mitochondria is discussed.  相似文献   

14.
Activation of aspartate aminotransferase and alanine aminotransferase of mitochondria introduced to the incubation medium of pyridoxal-5'-phosphate (40 microM) is approximately 2 times higher than that of the corresponding cytoplasmic forms. At hypoxia aspartate aminotransferase activity in mitochondria and postmitochondrial supernatant tends to an increase while that of alanine aminotransferase decreases (above 2 times). The protection from hypoxic damage when using L-aspartate (100 mg/kg subcutaneously 3-5 min before hypoxia) intensifies an adaptive increase of aspartate aminotransferase activity and removes a decrease of alanine aminotransferase activity. Under these conditions stimulating effect of pyridoxal-5'-phosphate on transaminases activity in vitro weakens. A simultaneous administration of vitamin-coenzyme complex (thiamine pyrophosphate, lipoate, sodium 4-phospho-pantothenate, flavin-mononucleotide, nicotinate) intensifies these metabolic shifts and protective action of L-aspartate.  相似文献   

15.
Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity.  相似文献   

16.
1. Butan-1-ol solubilizes that portion of rat liver mitochondrial aspartate aminotransferase (EC 2.6.1.1) that cannot be solubilized by ultrasonics and other treatments. 2. A difference in electrophoretic mobilities, chromatographic behaviour and solubility characteristics between the enzymes solubilized by ultrasonic treatment and by butan-1-ol was observed, suggesting the occurrence of two forms of this enzyme in rat liver mitochondria. 3. Half the aspartate aminotransferase activity of rat kidney homogenate was present in a high-speed supernatant fraction, the remainder being in the mitochondria. 4. A considerable increase in aspartate aminotransferase activity was observed when kidney mitochondrial suspensions were treated with ultrasonics or detergents. 5. All the activity after maximum activation was recoverable in the supernatant after centrifugation at 105000g for 1hr. 6. The electrophoretic mobility of the kidney mitochondrial enzyme was cathodic and that of the supernatant enzyme anodic. 7. Cortisone administration increased the activities of both mitochondrial and supernatant aspartate aminotransferases of liver, but only that of the supernatant enzyme of kidney.  相似文献   

17.
Incubation of intact mitochondria with aspartate aminotransferase results in efflux of malate dehydrogenase and vice versa. The export process is specific and rapid. It shows saturation kinetics with respect to the effector enzyme consistent with involvement of a receptor for the effector in the mitochondrial membrane system. Export is inhibited by both beta-mercaptoethanol and by the metal chelating agent bathophenanthroline; both substances inhibit release of malate dehydrogenase by aspartate aminotransferase competitively whereas for release of aspartate aminotransferase by malate dehydrogenase inhibition is non-competitive. The efflux process is dependent on a trans-membrane pH gradient. Exported enzymes differ from the native forms in their dependence of activity on pH. Export of both aspartate aminotransferase and malate dehydrogenase is effected by incubation of mitochondria with the newly-synthesised precursor of aspartate aminotransferase; this observation provides supporting evidence for the physiological significance of the other results reported here. It is speculated that exported enzymes are on a pathway to degradation, and that coupled uptake and export is involved in the co-ordination of synthesis and breakdown of mitochondrial proteins.  相似文献   

18.
19.
Rat liver soluble fraction contained 3 forms of alanine: glyoxylate aminotransferase. One with a pI of 5.2 and an Mr of approx. 110,000 was found to be identical with cytosolic alanine:2-oxoglutarate aminotransferase. The pI 6.0 enzyme with an Mr of approx. 220,000 was suggested to be from broken mitochondrial alanine:glyoxylate aminotransferase 2 and the pI 8.0 enzyme with an Mr of approx. 80,000 enzyme from broken peroxisomal and mitochondrial alanine:glyoxylate aminotransferase 1. These results suggest that the cytosolic alanine: glyoxylate aminotransferase activity is due to cytosolic alanine: 2-oxoglutarate aminotransferase.  相似文献   

20.
Recently we reported an affinity chromatography method to purify alpha-aminoadipate aminotransferase (AadAT) activity from rat kidney supernatant fraction. Using the same affinity column, we purified AadAT activities from rat kidney and liver mitochondria. The physical and kinetic properties such as pH optima, Km for substrates, molecular weight, subunit structure, isoelectric pH, electrophoretic mobility and inhibition by dicarboxylic acids of mitochondrial AadAT were similar to those of the AadAT from rat kidney supernatant fraction. These results indicate that AadAT from different subcellular fractions is structurally and immunologically identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号