共查询到20条相似文献,搜索用时 0 毫秒
1.
The SH2-containing inositol-5'-phosphatase enhances LFA-1-mediated cell adhesion and defines two signaling pathways for LFA-1 activation 总被引:1,自引:0,他引:1
Rey-Ladino JA Huber M Liu L Damen JE Krystal G Takei F 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(10):5792-5799
The inside-out signaling involved in the activation of LFA-1-mediated cell adhesion is still poorly understood. Here we examined the role of the SH2-containing inositol phosphatase (SHIP), a major negative regulator of intracellular signaling, in this process. Wild-type SHIP and a phosphatase-deficient mutant SHIP were overexpressed in the murine myeloid cell line, DA-ER, and the effects on LFA-1-mediated cell adhesion to ICAM-1 (CD54) were tested. Overexpression of wild-type SHIP significantly enhanced cell adhesion to immobilized ICAM-1, and PMA, IL-3, or erythropoietin further augmented this adhesion. In contrast, phosphatase dead SHIP had no enhancing effects. Furthermore, PMA-induced activation of LFA-1 on DA-ER cells overexpressing wild-type SHIP was dependent on protein kinase C but independent of mitogen-activated protein kinase activation, whereas cytokine-induced activation was independent of protein kinase C and mitogen-activated protein kinase activation but required phosphatidylinositol-3 kinase activation. These results suggest that SHIP may regulate two distinct inside-out signaling pathways and that the phosphatase activity of SHIP is essential for both of them. 相似文献
2.
v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) transforms pre-B cells. Transformation requires the phosphatidylinositol 3-kinase (PI3K) pathway. This pathway is antagonized by SH2-containing inositol 5'-phosphatase (SHIP), raising the possibility that v-Abl modulates PI3K signaling through SHIP. Consistent with this, we show that v-Abl expression reduces levels of full-length p145 SHIP in a v-Abl kinase activity-dependent fashion. This event requires signals from the Abl SH2 domain but not the carboxyl terminus. Forced expression of full-length SHIP significantly reduces Ab-MLV pre-B-cell transformation. Therefore, reduction of SHIP protein by v-Abl is a critical component in Ab-MLV transformation. 相似文献
3.
Fuhler GM Brooks R Toms B Iyer S Gengo EA Park MY Gumbleton M Viernes DR Chisholm JD Kerr WG 《Molecular medicine (Cambridge, Mass.)》2012,18(1):65-75
Many tumors present with increased activation of the phosphatidylinositol 3-kinase (PI3K)-PtdIns(3,4,5)P(3)-protein kinase B (PKB/Akt) signaling pathway. It has long been thought that the lipid phosphatases SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 act as tumor suppressors by counteracting with the survival signal induced by this pathway through hydrolysis or PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). However, a growing body of evidence suggests that PtdInd(3,4)P(2) is capable of, and essential for, Akt activation, thus suggesting a potential role for SHIP1/2 enzymes as proto-oncogenes. We recently described a novel SHIP1-selective chemical inhibitor (3α-aminocholestane [3AC]) that is capable of killing malignant hematologic cells. In this study, we further investigate the biochemical consequences of 3AC treatment in multiple myeloma (MM) and demonstrate that SHIP1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to caspase activation and apoptosis. In addition, we show that in vivo growth of MM cells is blocked by treatment of mice with the SHIP1 inhibitor 3AC. Furthermore, we identify three novel pan-SHIP1/2 inhibitors that efficiently kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP2-expressing breast cancer cells that lack SHIP1 expression, pan-SHIP1/2 inhibition also reduces viable cell numbers, which can be rescued by addition of exogenous PtdIns(3,4)P(2). In conclusion, this study shows that inhibition of SHIP1 and SHIP2 may have broad clinical application in the treatment of multiple tumor types. 相似文献
4.
SH2-containing inositol 5'-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading 下载免费PDF全文
In a previous study, we found that the SHIP2 protein became tyrosine phosphorylated and associated with the Shc adapter protein in response to the treatment of cells with growth factors and insulin (T. Habib, J. A. Hejna, R. E. Moses, and S. J. Decker, J. Biol. Chem. 273:18605-18609, 1998). We describe here a novel interaction between SHIP2 and the p130(Cas) adapter protein, a mediator of actin cytoskeleton organization. SHIP2 and p130(Cas) association was detected in anti-SHIP2 immunoprecipitates from several cell types. Reattachment of trypsinized cells stimulated tyrosine phosphorylation of SHIP2 and increased the formation of a complex containing SHIP2 and a faster-migrating tyrosine-phosphorylated form of p130(Cas). The faster-migrating form of p130(Cas) was no longer recognized by antibodies to the amino terminus of p130(Cas) and appeared to be generated through proteolysis. Interaction of the SHIP2 protein with the various forms of p130(Cas) was mediated primarily through the SH2 domain of SHIP2. Immunofluorescence studies indicated that SHIP2 localized to focal contacts and to lamellipodia. Increased adhesion was observed in HeLa cells transiently expressing exogenous WT-SHIP2. These effects were not seen with SHIP2 possessing a mutation in the SH2 domain (R47G). Transfection of a catalytic domain deletion mutant of SHIP2 (DeltaRV) inhibited cell spreading. Taken together, our studies suggest an important role for SHIP2 in adhesion and spreading. 相似文献
5.
Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5'-phosphatase catalytic activity 总被引:3,自引:0,他引:3 下载免费PDF全文
Wada T Sasaoka T Funaki M Hori H Murakami S Ishiki M Haruta T Asano T Ogawa W Ishihara H Kobayashi M 《Molecular and cellular biology》2001,21(5):1633-1646
Phosphatidylinositol (PI) 3-kinase plays an important role in various metabolic actions of insulin including glucose uptake and glycogen synthesis. Although PI 3-kinase primarily functions as a lipid kinase which preferentially phosphorylates the D-3 position of phospholipids, the effect of hydrolysis of the key PI 3-kinase product PI 3,4,5-triphosphate [PI(3,4,5)P3] on these biological responses is unknown. We recently cloned rat SH2-containing inositol phosphatase 2 (SHIP2) cDNA which possesses the 5'-phosphatase activity to hydrolyze PI(3,4,5)P3 to PI 3,4-bisphosphate [PI(3,4)P2] and which is mainly expressed in the target tissues of insulin. To study the role of SHIP2 in insulin signaling, wild-type SHIP2 (WT-SHIP2) and 5'-phosphatase-defective SHIP2 (Delta IP-SHIP2) were overexpressed in 3T3-L1 adipocytes by means of adenovirus-mediated gene transfer. Early events of insulin signaling including insulin-induced tyrosine phosphorylation of the insulin receptor beta subunit and IRS-1, IRS-1 association with the p85 subunit, and PI 3-kinase activity were not affected by expression of either WT-SHIP2 or Delta IP-SHIP2. Because WT-SHIP2 possesses the 5'-phosphatase catalytic region, its overexpression marked by decreased insulin-induced PI(3,4,5)P3 production, as expected. In contrast, the amount of PI(3,4,5)P3 was increased by the expression of Delta IP-SHIP2, indicating that Delta IP-SHIP2 functions in a dominant-negative manner in 3T3-L1 adipocytes. Both PI(3,4,5)P3 and PI(3,4)P2 were known to possibly activate downstream targets Akt and protein kinase C lambda in vitro. Importantly, expression of WT-SHIP2 inhibited insulin-induced activation of Akt and protein kinase C lambda, whereas these activations were increased by expression of Delta IP-SHIP2 in vivo. Consistent with the regulation of downstream molecules of PI 3-kinase, insulin-induced 2-deoxyglucose uptake and Glut4 translocation were decreased by expression of WT-SHIP2 and increased by expression of Delta IP-SHIP2. In addition, insulin-induced phosphorylation of GSK-3beta and activation of PP1 followed by activation of glycogen synthase and glycogen synthesis were decreased by expression of WT-SHIP2 and increased by the expression of Delta IP-SHIP2. These results indicate that SHIP2 negatively regulates metabolic signaling of insulin via the 5'-phosphatase activity and that PI(3,4,5)P3 rather than PI(3,4)P2 is important for in vivo regulation of insulin-induced activation of downstream molecules of PI 3-kinase leading to glucose uptake and glycogen synthesis. 相似文献
6.
Kashiwada M Cattoretti G McKeag L Rouse T Showalter BM Al-Alem U Niki M Pandolfi PP Field EH Rothman PB 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(7):3958-3965
The adaptor protein, downstream of tyrosine kinases-1 (Dok-1), and the phosphatase SHIP are both tyrosine phosphorylated in response to T cell stimulation. However, a function for these molecules in T cell development has not been defined. To clarify the role of Dok-1 and SHIP in T cell development in vivo, we compared the T cell phenotype of wild-type, Dok-1 knockout (KO), SHIP KO, and Dok-1/SHIP double-knockout (DKO) mice. Dok-1/SHIP DKO mice were runted and had a shorter life span compared with either Dok-1 KO or SHIP KO mice. Thymocyte numbers from Dok-1/SHIP DKO mice were reduced by 90%. Surface expression of both CD25 and CD69 was elevated on freshly isolated splenic CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO, suggesting these cells were constitutively activated. However, these T cells did not proliferate or produce IL-2 after stimulation. Interestingly, the CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO mice produced higher levels of TGF-beta, expressed Foxp3, and inhibited IL-2 production by CD3-stimulated CD4(+)CD25(-) T cells in vitro. These findings suggest Dok-1 and SHIP function in pathways that influence regulatory T cell development. 相似文献
7.
Shlapatska LM Mikhalap SV Berdova AG Zelensky OM Yun TJ Nichols KE Clark EA Sidorenko SP 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(9):5480-5487
CD150 (SLAM/IPO-3) is a cell surface receptor that, like the B cell receptor, CD40, and CD95, can transmit positive or negative signals. CD150 can associate with the SH2-containing inositol phosphatase (SHIP), the SH2-containing protein tyrosine phosphatase (SHP-2), and the adaptor protein SH2 domain protein 1A (SH2D1A/DSHP/SAP, also called Duncan's disease SH2-protein (DSHP) or SLAM-associated protein (SAP)). Mutations in SH2D1A are found in X-linked lymphoproliferative syndrome and non-Hodgkin's lymphomas. Here we report that SH2D1A is expressed in tonsillar B cells and in some B lymphoblastoid cell lines, where CD150 coprecipitates with SH2D1A and SHIP. However, in SH2D1A-negative B cell lines, including B cell lines from X-linked lymphoproliferative syndrome patients, CD150 associates only with SHP-2. SH2D1A protein levels are up-regulated by CD40 cross-linking and down-regulated by B cell receptor ligation. Using GST-fusion proteins with single replacements of tyrosine at Y269F, Y281F, Y307F, or Y327F in the CD150 cytoplasmic tail, we found that the same phosphorylated Y281 and Y327 are essential for both SHP-2 and SHIP binding. The presence of SH2D1A facilitates binding of SHIP to CD150. Apparently, SH2D1A may function as a regulator of alternative interactions of CD150 with SHP-2 or SHIP via a novel TxYxxV/I motif (immunoreceptor tyrosine-based switch motif (ITSM)). Multiple sequence alignments revealed the presence of this TxYxxV/I motif not only in CD2 subfamily members but also in the cytoplasmic domains of the members of the SHP-2 substrate 1, sialic acid-binding Ig-like lectin, carcinoembryonic Ag, and leukocyte-inhibitory receptor families. 相似文献
8.
M Kashiwada C C Giallourakis P Y Pan P B Rothman 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(11):6382-6387
Immunoreceptor tyrosine-based inhibitory motifs (ITIM) have been implicated in the negative modulation of immunoreceptor signaling pathways. The IL-4R alpha-chain (IL-4Ralpha) contains a putative ITIM in the carboxyl terminal. To determine the role of ITIM in the IL-4 signaling pathway, we ablated the ITIM of IL-4Ralpha by deletion and site-directed mutagenesis and stably expressed the wild-type (WT) and mutant hIL-4Ralpha in 32D/insulin receptor substrate-2 (IRS-2) cells. Strikingly, 32D/IRS-2 cells expressing mutant human (h)IL-4Ralpha were hyperproliferative in response to IL-4 compared with cells expressing WT hIL-4Ralpha. Enhanced tyrosine phosphorylation of Stat6, but not IRS-2, induced by hIL-4 was observed in cells expressing mutant Y713F. Using peptides corresponding to the ITIM of hIL-4Ralpha, we demonstrate that tyrosine-phosphorylated peptides, but not their nonphosphorylated counterparts, coprecipitate SH2-containing tyrosine phosphatase-1, SH2-containing tyrosine phosphatase-2, and SH2-containing inositol 5'-phosphatase. The in vivo association of SH2-containing inositol 5'-phosphatase with IL-4Ralpha was verified by coimmunoprecipitation with anti-IL-4Ralpha Abs. These results demonstrate a functional role for ITIM in the regulation of IL-4-induced proliferation. 相似文献
9.
Gupta N Scharenberg AM Fruman DA Cantley LC Kinet JP Long EO 《The Journal of biological chemistry》1999,274(11):7489-7494
Coligation of FcgammaRIIb1 with the B cell receptor (BCR) or FcepsilonRI on mast cells inhibits B cell or mast cell activation. Activity of the inositol phosphatase SHIP is required for this negative signal. In vitro, SHIP catalyzes the conversion of the phosphoinositide 3-kinase (PI3K) product phosphatidylinositol 3,4, 5-trisphosphate (PIP3) into phosphatidylinositol 3,4-bisphosphate. Recent data demonstrate that coligation of FcgammaRIIb1 with BCR inhibits PIP3-dependent Btk (Bruton's tyrosine kinase) activation and the Btk-dependent generation of inositol trisphosphate that regulates sustained calcium influx. In this study, we provide evidence that coligation of FcgammaRIIb1 with BCR induces binding of PI3K to SHIP. This interaction is mediated by the binding of the SH2 domains of the p85 subunit of PI3K to a tyrosine-based motif in the C-terminal region of SHIP. Furthermore, the generation of phosphatidylinositol 3,4-bisphosphate was only partially reduced during coligation of BCR with FcgammaRIIb1 despite a drastic reduction in PIP3. In contrast to the complete inhibition of Tec kinase-dependent calcium signaling, activation of the serine/threonine kinase Akt was partially preserved during BCR and FcgammaRIIb1 coligation. The association of PI3K with SHIP may serve to activate PI3K and to regulate downstream events such as B cell activation-induced apoptosis. 相似文献
10.
Kim EK Noh KT Yoon JH Cho JH Yoon KW Dreyfuss G Choi EJ 《Cell death and differentiation》2007,14(8):1518-1528
Gemin5 is a 170-kDa WD-repeat-containing protein that was initially identified as a component of the survival of motor neurons (SMN) complex. We now show that Gemin5 facilitates the activation of apoptosis signal-regulating kinase 1 (ASK1) and downstream signaling. Gemin5 physically interacted with ASK1 as well as with the downstream kinases SEK1 and c-Jun NH(2)-terminal kinase (JNK1), and it potentiated the H(2)O(2)-induced activation of each of these kinases in intact cells. Moreover, Gemin5 promoted the binding of ASK1 to SEK1 and to JNK1, as well as the ASK1-induced activation of JNK1. In comparison, Gemin5 did not physically associate with MKK7, MKK3, MKK6, or p38. Furthermore, depletion of endogenous Gemin5 by RNA interference (RNAi) revealed that Gemin5 contributes to the activation of ASK1 and JNK1, and to apoptosis induced by H(2)O(2) and tumor necrosis factor-alpha (TNFalpha) in HeLa cells. Together, our results suggest that Gemin5 functions as a scaffold protein for the ASK1-JNK1 signaling module and thereby potentiates ASK1-mediated signaling events. 相似文献
11.
Ishihara H Sasaoka T Ishiki M Wada T Hori H Kagawa S Kobayashi M 《Molecular endocrinology (Baltimore, Md.)》2002,16(10):2371-2381
Lipid phosphatase SHIP2 [Src homology 2 (SH2)-containing inositol 5'-phosphatase 2] has been shown to be a physiologically critical negative regulator of insulin signaling. We investigated the molecular mechanism by which SHIP2 negatively regulates insulin-induced phosphorylation of Akt, a key downstream molecule of phosphatidylinositol 3-kinase important for the biological action of insulin. Overexpression of wild-type SHIP2 (WT-SHIP2) inhibited insulin-induced phosphorylation of Akt at both Thr(308) and Ser(473) in Rat1 fibroblasts expressing insulin receptors. The degree of inhibition was less in the cells expressing either a mutant SHIP2 with R47Q change (R/Q-SHIP2) in the SH2 domain, or a mutant SHIP2 with Y987F change (Y/F-SHIP2) in the C-terminal tyrosine phosphorylation site. However, on addition of a myristoylation signal, WT-SHIP2, R/Q-SHIP2, and Y/F-SHIP2 all efficiently inhibited insulin-induced Akt phosphorylation at both residues, whereas a 5'-phosphatase-defective mutant SHIP2 (deltaIP-SHIP2) with the myristoylation signal did not. Interestingly, the degree of inhibition of Akt phosphorylation by R/Q-SHIP2 and Y/F-SHIP2 is well correlated with the extent of their association with Shc. In addition, overexpression of WT-Shc increased the insulin-induced association of SHIP2 with Shc, whereas a decrease in the amount of Shc on expression of antisense Shc mRNA led to a reduction in the SHIP2-Shc association. Furthermore, the inhibitory effect on insulin-induced Akt phosphorylation by WT-SHIP2 was decreased in antisense-Shc cells. These results indicate that the membrane localization of SHIP2 with its 5'-phosphatase activity is required for negative regulation of insulin-induced Akt phosphorylation and that the localization is regulated, at least in part, by the association of SHIP2 with Shc in Rat1 fibroblasts. 相似文献
12.
Negative regulation of myeloid cell proliferation and function by the SH2 domain-containing tyrosine phosphatase-1 总被引:7,自引:0,他引:7
Dong Q Siminovitch KA Fialkow L Fukushima T Downey GP 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(6):3220-3230
The SH2 domain containing tyrosine phosphatase SHP-1 has been implicated in the regulation of a multiplicity of signaling pathways involved in hemopoietic cell growth, differentiation, and activation. A pivotal contribution of SHP-1 in the modulation of myeloid cell signaling cascades has been revealed by the demonstration that SHP-1 gene mutation is responsible for the overexpansion and inappropriate activation of myelomonocytic populations in motheaten mice. To investigate the role of SHP-1 in regulation of myeloid leukocytes, an HA epitope-tagged dominant negative (interfering) SHP-1 (SHP-1C453S) was expressed in the myelo-monocytic cell line U937 using the pcDNA3 vector. Overexpression of this protein in SHP-1C453S transfectants was demonstrated by Western blot analysis and by detection of decreased specific activity. Growth, proliferation, and IL-3-induced proliferative responses were substantially increased in the SHP-1C453S-overexpressing cells relative to those in control cells. The results of cell cycle analysis also revealed that the proportion of cells overexpressing SHP-1C453S in S phase was greater than that of control cells. The SHP-1C453S-expressing cells also displayed diminished rates of apoptosis as detected by flow cytometric analysis of propidium iodide-stained cells and terminal deoxynucleotidyltransferase-mediated fluorescein-dUTP nick end-labeling assay. While motility and phagocytosis were not affected by SHP-1C453S overexpression, adhesion and the oxidative burst in response to PMA were enhanced in the SHP-1C453S compared with those in the vector alone transfectants. Taken together, these results suggest that SHP-1 exerts an important negative regulatory influence on cell proliferation and activation while promoting spontaneous cell death in myeloid cells. 相似文献
13.
Monteiro AN 《Biochimie》2006,88(7):905-911
When cells are treated with Ca(2+) and Ca(2+)-ionophore, c-Src kinase activity increases, whereas c-Yes kinase activity decreases. This opposite modulation can be reproduced in an in vitro reconstitution assay and is dependent on Ca(2+) and on soluble factors present in cell lysates. Since c-Src and c-Yes share a high degree of homology, with the exception of their N-terminal "unique" domains, their activity was thought to be coordinately regulated. To assess the mechanism of regulation we generated stable cell lines expressing eight different constructs containing wild type c-Src and c-Yes, as well as swaps of the unique domain alone, unique and Src homology 3 (SH3) domains together and the SH3 domain alone. Swapping of the unique domains was not sufficient to reverse the regulation of the chimeric molecules. On the other hand, chimeras containing swaps of the unique plus the SH3 domains displayed reverse regulation, implicating both domains in the regulation of kinase activity by Ca(2+). To rule out the participation of the unique domain, we used chimeric molecules with swapped SH3 domains only and found that the SH3 domain is necessary and sufficient to confer Ca(2+)-mediated regulation of Src and Yes tyrosine kinases. 相似文献
14.
R Xu J Abramson M Fridkin I Pecht 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(11):6394-6402
The mast cell function-associated Ag (MAFA) is a type II membrane glycoprotein originally found on the plasma membrane of rat mucosal-type mast cells (RBL-2H3 line). A C-type lectin domain and an immunoreceptor tyrosine-based inhibitory motif (ITIM) are located in the extracellular and intracellular domains of MAFA, respectively. MAFA clustering has previously been shown to suppress the secretory response of these cells to the FcepsilonRI stimulus. Here we show that the tyrosine of the ITIM undergoes phosphorylation, on MAFA clustering, that is markedly enhanced on pervanadate treatment of the cells. Furthermore, the Src homology 3 domain of the protein tyrosine kinase Lyn binds directly to a peptide containing nonphosphorylated MAFA ITIM and PAAP motif. Results of both in vitro and in vivo experiments suggest that Lyn is probably responsible for this ITIM phosphorylation, which increases the Src homology domain 2 (SH2) affinity of Lyn for the peptide. In vitro measurements established that tyrosine-phosphorylated MAFA ITIM peptides also bind the SH2 domains of inositol 5'-phosphatase (SHIP) as well as protein tyrosine phosphatase-2. However, the former single domain is bound 8-fold stronger than both of the latter. Further support for the role of SHIP in the action of MAFA stems from in vivo experiments in which tyrosine-phosphorylated MAFA was found to bind primarily SHIP. In RBL-2H3 cells overexpressing wild-type SHIP, MAFA clustering causes markedly stronger inhibition of the secretory response than in control cells expressing normal SHIP levels or cells overexpressing either wild-type protein tyrosine phosphatase-2 or its dominant negative form. In contrast, on overexpression of the SH2 domain of SHIP, the inhibitory action of MAFA is essentially abolished. Taken together, these results suggest that SHIP is the primary enzyme responsible for mediating the inhibition by MAFA of RBL-2H3 cell response to the FcepsilonRI stimulus. 相似文献
15.
16.
Vandenbroere I Paternotte N Dumont JE Erneux C Pirson I 《Biochemical and biophysical research communications》2003,300(2):494-500
SHIP2 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase which contains motifs susceptible to mediate protein-protein interaction. Using yeast two-hybrid, GST-pulldown, and coimmunoprecipitation studies, we isolated the CAP cDNA as a specific partner of SHIP2 proline-rich domain and showed by GST-pulldown experiments that the interaction took place with the SH3C of CAP. The interaction was not modulated in COS-7 cells stimulated by EGF neither in CHO cells overexpressing the insulin receptor in the presence or absence of insulin stimulation. We also showed that SHIP2 was able to coimmunoprecipitate with endogenous c-Cbl protein in the absence of CAP and with the insulin receptor in CHO-IR cell extracts. The presence of SHIP2 in a complex around the insulin receptor could account for the very specific increase in insulin sensitivity of SHIP2 knock-out mice. 相似文献
17.
Molecular cloning of rat SH2-containing inositol phosphatase 2 (SHIP2) and its role in the regulation of insulin signaling. 总被引:7,自引:0,他引:7
H Ishihara T Sasaoka H Hori T Wada H Hirai T Haruta W J Langlois M Kobayashi 《Biochemical and biophysical research communications》1999,260(1):265-272
SH2-containing inositol 5'-phosphatase (SHIP) plays a negative regulatory role in hematopoietic cells. We have now cloned the rat SHIP isozyme (SHIP2) cDNA from skeletal muscle, which is one of the most important target tissue of insulin action. Rat SHIP2 cDNA encodes a 1183-amino-acid protein that is 45% identical with rat SHIP. Rat SHIP2 contains an amino-terminal SH2 domain, a central 5'-phosphoinositol phosphatase activity domain, and a phosphotyrosine binding (PTB) consensus sequence and a proline-rich region at the carboxyl tail. Specific antibodies to SHIP2 were raised and the function of SHIP2 was studied by stably overexpressing rat SHIP2 in Rat1 fibroblasts expressing human insulin receptors (HIRc). Endogenous SHIP2 underwent insulin-mediated tyrosine phosphorylation and phosphorylation was markedly increased when SHIP2 was overexpressed. Although overexpression of SHIP2 did not affect insulin-induced tyrosine phosphorylation of the insulin receptor beta-subunit and Shc, subsequent association of Shc with Grb2 was inhibited, possibly by competition between the SH2 domains of SHIP2 and Grb2 for the Shc phosphotyrosine. As a result, insulin-stimulated MAP kinase activation was reduced in SHIP2-overexpressing cells. Insulin-induced tyrosine phosphorylation of IRS-1, IRS-1 association with the p85 subunit of PI3-kinase, and PI3-kinase activation were not affected by overexpression of SHIP2. Interestingly, although both PtdIns-(3,4,5)P3 and PtdIns(3,4)P2 have been implicated in the regulation of Akt activity in vitro, overexpression of SHIP2 inhibited insulin-induced Akt activation, presumably by its 5'-inositol phosphatase activity. Furthermore, insulin-induced thymidine incorporation was decreased by overexpression of SHIP2. These results indicate that SHIP2 plays a negative regulatory role in insulin-induced mitogenesis, and regulation of the Shc. Grb2 complex and of the downstream products of PI3-kinase provides possible mechanisms of SHIP2 action in insulin signaling. 相似文献
18.
Mouhamad S Arnoult D Auffredou MT Estaquier J Vazquez A 《European cytokine network》2002,13(4):439-445
Caspases are a group of cysteine-related proteases that control the process of apoptosis and may also be involved in the control of lymphocyte activation. We show here that the broad-spectrum caspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp (Ome)-fluoromethylketone (zVAD-fmk) prevents the proliferation of resting human B tonsilar lymphocytes mediated by the B cell mitogen SAC or the combination of anti-mu Ab and IL-2. zVAD-fmk inhibits IL-2-induced phosphorylation of the retinoblastoma protein, and cyclin D2 expression. However, neither the IL-2-mediated proliferation of cycling activated B cells nor that of lymphoma cells were inhibited by zVAD-fmk, suggesting that only the early steps of SAC- or IL-2-mediated B cell activation were sensitive to the inhibitory properties of zVAD-fmk. Our data also demonstrated that the inhibitory effect of zVAD-fmk was not observed when B cells were activated with IL-4 in the presence of either anti-mu Ab or anti-CD40 Ab. Thus, our results suggest that caspase activation is required for the IL-2-mediated entry of primary B lymphocytes into the cell cycle and show that caspase activation plays different roles in IL-2- and IL-4-mediated B cell proliferation. 相似文献
19.
20.
Differential binding to and regulation of JAK2 by the SH2 domain and N-terminal region of SH2-bbeta 下载免费PDF全文
SH2-Bbeta has been shown to bind via its SH2 (Src homology 2) domain to tyrosyl-phosphorylated JAK2 and strongly activate JAK2. In this study, we demonstrate the existence of an additional binding site(s) for JAK2 within the N-terminal region of SH2-Bbeta (amino acids 1 to 555) and the ability of this region of SH2-B to inhibit JAK2. Four lines of evidence support the existence of this additional binding site(s). In a glutathione S-transferase pull-down assay, wild-type SH2-Bbeta and SH2-Bbeta(R555E) with a defective SH2 domain bind to both tyrosyl-phosphorylated JAK2 from growth hormone (GH)-treated cells and non-tyrosyl-phosphorylated JAK2 from control cells, whereas the SH2 domain of SH2-Bbeta binds only to tyrosyl-phosphorylated JAK2 from GH-treated cells. Similarly, JAK2 is present in alphaSH2-B immunoprecipitates in the absence and presence of GH, with GH substantially increasing the coprecipitation of JAK2 with SH2-B. When coexpressed in COS cells, SH2-Bbeta coimmunoprecipitates not only wild-type, tyrosyl-phosphorylated JAK2 but also kinase-inactive, non-tyrosyl-phosphorylated JAK2(K882E), although to a lesser extent. DeltaC555 (amino acids 1 to 555 of SH2-Bbeta) that lacks most of the SH2 domain binds similarly to wild-type JAK2 and kinase-inactive JAK2(K882E). Experiments using a series of N- and C-terminally truncated SH2-Bbeta constructs indicate that the pleckstrin homology (PH) domain (amino acids 269 to 410) and amino acids 410 to 555 are necessary for maximal binding of SH2-Bbeta to inactive JAK2, but neither region alone is sufficient for maximal binding. The SH2 domain of SH2-Bbeta is necessary and sufficient for the stimulatory effect of SH2-Bbeta on JAK2 and JAK2-mediated tyrosyl phosphorylation of Stat5B. In contrast, DeltaC555 lacking the SH2 domain, and to a lesser extent the PH domain alone, inhibits JAK2. DeltaC555 also blocks JAK2-mediated tyrosyl phosphorylation of Stat5B in COS cells and GH-stimulated nuclear accumulation of Stat5B in 3T3-F442A cells. These data indicate that in addition to the SH2 domain, SH2-Bbeta has one or more lower-affinity binding sites for JAK2 within amino acids 269 to 555. The interaction via this site(s) in SH2-B with inactive JAK2 seems likely to increase the local concentration of SH2-Bbeta around JAK2, thereby facilitating binding of the SH2 domain to ligand-activated JAK2. This would result in a more rapid and robust cellular response to hormones and cytokines that activate JAK2. This interaction between inactive JAK2 and SH2-B may also help prevent abnormal activation of JAK2. 相似文献