首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary and chest wall mechanics in anesthetized paralyzed humans   总被引:3,自引:0,他引:3  
Pulmonary and chest wall mechanics were studied in 18 anesthetized paralyzed supine humans by use of the technique of rapid airway occlusion during constant-flow inflation. Analysis of the changes in transpulmonary pressure after flow interruption allowed partitioning of the overall resistance of the lung (RL) into two compartments, one (Rint,L) reflecting airway resistance and the other (delta RL) representing the viscoelastic properties of the pulmonary tissues. Similar analysis of the changes in esophageal pressure indicates that chest wall resistance (RW) was due entirely to the viscoelastic properties of the chest wall tissues (delta RW = RW). In line with previous measurements of airway resistance, Rint,L increased with increasing flow and decreased with increasing volume. The opposite was true for both delta RL and delta RW. This behavior was interpreted in terms of a viscoelastic model that allowed computation of the viscoelastic constants of the lung and chest wall. This model also accounts for frequency, volume, and flow dependence of elastance of the lung and chest wall. Static and dynamic elastances, as well as delta R, were higher for the lung than for the chest wall.  相似文献   

2.
Pulmonary and chest wall mechanics were studied in six anesthetized paralyzed dogs, by use of the technique of rapid airway occlusion during constant flow inflation. Analysis of the pressure changes after flow interruption allowed us to partition the overall resistance of the lung (Rl) and chest wall (Rw) and total respiratory system (Rrs) into two components, one (Rinit) reflecting in the lung airway resistance (Raw), the other (delta R) reflecting primarily the viscoelastic properties of the pulmonary and chest wall tissues. The effects of varying inspiratory flow and inflation volume were interpreted in terms of frequency dependence of resistance, by using a spring-and-dashpot model previously proposed and substantiated by Bates et al. (Proc. 9th Annu. Conf. IEEE Med. Biol. Soc., 1987, vol. 3, p. 1802-1803). We observed that 1) Raw and Rw,init were nearly equal and small relative to Rl and Rw (both were unaffected by flow); 2) Rrs,init decreased slightly with increasing volume; 3) both delta Rl and delta Rw decreased with increasing flow and increased with increasing lung volume. These changes were manifestations of frequency dependence of delta R, as it is predicted by the model; 4) Rrs, Rl, and Rw followed the same trends as delta R. These results corroborate data previously reported in the literature with the use of different techniques to measure airways and pulmonary tissue resistances and confirm that the use of Rl to assess bronchial reactivity is problematic. The interrupter techniques provides a convenient way to obtain Raw values, as well as analogs of lung and chest wall tissue resistances in intact dogs.  相似文献   

3.
In six spontaneously breathing anesthetized cats (pentobarbital sodium, 35 mg/kg ip), airflow, changes in lung volume, and tracheal and esophageal pressures were measured. Airflow was interrupted by brief airway occlusions during relaxed expirations (elicited via the Breuer-Hering inflation reflex) and throughout spontaneous breaths. A plateau in tracheal pressure occurred throughout relaxed expirations and the latter part of spontaneous expirations indicating respiratory muscle relaxation. Measurement of tracheal pressure, immediately preceding airflow, and corresponding volume enabled determination of respiratory system elastance and flow resistance. These were partitioned into lung and chest wall components using esophageal pressure. Respiratory system elastance was constant over the tidal volume range, divided approximately equally between the lung and chest wall. While the passive pressure-flow relationship for the respiratory system was linear, those for the lung and chest wall were curvilinear. Volume dependence of chest wall flow resistance was demonstrated. During inspiratory interruptions, tracheal pressure increased progressively; initial tracheal pressure was estimated by backward extrapolation. Inspiratory flow resistance of the lung and total respiratory system were constant. Force-velocity properties of the contracting inspiratory muscles contributed little to overall active resistance.  相似文献   

4.
We simultaneously evaluated the mechanical response of the total respiratory system, lung, and chest wall to changes in posture and to bronchoconstriction. We synthesized the optimal ventilation waveform (OVW) approach, which simultaneously provides ventilation and multifrequency forcing, with optoelectronic plethysmography (OEP) to measure chest wall flow globally and locally. We applied an OVW containing six frequencies from 0.156 to 4.6 Hz to the mouth of six healthy men in the seated and supine positions, before and after methacholine challenge. We measured mouth, esophageal, and transpulmonary pressures, airway flow by pneumotachometry, and total chest wall, pulmonary rib cage, and abdominal volumes by OEP. We computed total respiratory, lung, and chest wall input impedances and the total and regional transfer impedances (Ztr). These data were appropriately sensitive to changes in posture, showing added resistance in supine vs. seated position. The Ztr were also highly sensitive to lung constriction, more so than input impedance, as the former is minimally distorted by shunting of flow into alveolar gas compression and airway walls. Local impedances show that, during bronchoconstriction and at typical breathing frequencies, the contribution of the abdomen becomes amplified relative to the rib cage. A similar redistribution occurs when passing from seated to supine. These data suggest that the OEP-OVW approach for measuring Ztr could noninvasively track important lung and respiratory conditions, even in subjects who cannot cooperate. Applications might range from routine evaluation of airway hyperreactivity in asthmatic subjects to critical conditions in the supine position during mechanical ventilation.  相似文献   

5.
With the use of the technique of rapid airway occlusion during constant flow inflation, respiratory mechanics were studied in eight anesthetized paralyzed supine normal humans during zero (ZEEP) and positive end-expiratory pressure (PEEP) ventilation. PEEP increased the end-expiratory lung volume by 0.49 liter. The changes in transpulmonary and esophageal pressure after flow interruption were analyzed in terms of a seven-parameter "viscoelastic" model. This allowed assessment of static lung and chest wall elastance (Est,L and Est,W), partitioning of overall resistance into airway interrupter (Rint,L) and tissue resistances (delta RL and delta RW), and computation of lung and chest wall "viscoelastic constants." With increasing flow, Rint,L increased, whereas delta RL and delta RW decreased, as predicted by the model. Est,L, Est,W, and Rint,L decreased significantly with PEEP because of increased lung volume, whereas delta R and viscoelastic constants of lung and chest wall were independent of PEEP. The results indicate that PEEP caused a significant decrease in Rint,L, Est,L, and Est,W, whereas the dynamic tissue behavior, as reflected by delta RL and delta RW, did not change.  相似文献   

6.
A novel multi-component model is introduced for studying interaction between blood flow and deforming aortic wall with intramural hematoma (IMH). The aortic wall is simulated by a composite structure submodel representing material properties of the three main wall layers. The IMH is described by a poroelasticity submodel which takes into account both the pressure inside hematoma and its deformation. The submodel of the hematoma is fully coupled with the aortic submodel as well as with the submodel of the pulsatile blood flow. Model simulations are used to investigate the relation between the peak wall stress, hematoma thickness and permeability in patients of different age. The results indicate that an increase in hematoma thickness leads to larger wall stress, which is in agreement with clinical data. Further simulations demonstrate that a hematoma with smaller permeability results in larger wall stress, suggesting that blood coagulation in hematoma might increase its mechanical stability. This is in agreement with previous experimental observations of coagulation having a beneficial effect on the condition of a patient with the IMH.  相似文献   

7.
To further investigate the effects of airway cartilage softening on static and dynamic lung mechanics, 11 rabbits were treated with 100 mg/kg iv papain, whereas 9 control animals received no pretreatment. Lung mechanics were studied 24 h after papain injection. There was no significant difference in lung volumes, lung pressure-volume curves, or chest wall compliance. Papain-treated rabbits showed increased lung resistance: 91 +/- 63 vs. 39 +/- 22 cmH2O X l-1 X s (mean +/- SD; P less than 0.05), decreased maximal expiratory flows at all lung volumes, and preserved density dependence of maximal expiratory flows. We conclude that increased airway wall compliance is probably the mechanism that limited maximal expiratory flow in this animal model. In addition the increased lung resistance suggests that airway cartilage plays a role in the regulation of airway caliber during quiet tidal breathing.  相似文献   

8.
An index of airway caliber can be tracked in near-real time by measuring airway resistance (Raw) as indicated by lung resistance at 8 Hz. These measurements require the placing of an esophageal balloon. The objective of this study was to establish whether total respiratory system resistance (Rrs) could be used rather than Raw to track airway caliber, thereby not requiring an esophageal balloon. Rrs includes the resistance of the chest wall (Rcw). We used a recursive least squares approach to track Raw and Rrs at 8 Hz in seven healthy and seven asthmatic subjects during tidal breathing and a deep inspiration (DI). In both subject groups, Rrs was significantly higher than Raw during tidal breathing at baseline and postchallenge. However, at total lung capacity, Raw and Rrs became equivalent. Measured with this approach, Rcw appears volume dependent, having a magnitude of 0.5-1.0 cmH2O. l-1. s during tidal breathing and decreasing to zero at total lung capacity. When resistances are converted to an effective diameter, Rrs data overestimate the increase in diameter during a DI. Simulation studies suggest that the decrease in apparent Rcw during a DI is a consequence of airway opening flow underestimating chest wall flow at increased lung volume. We conclude that the volume dependence of Rcw can bias the presumed net change in airway caliber during tidal breathing and a DI but would not distort assessment of maximum airway dilation.  相似文献   

9.
In five spontaneously breathing anesthetized subjects [halothane approximately 1 minimal alveolar concentration (MAC), 70% N2O, 30% O2], flow, changes in lung volume, and esophageal and airway opening pressure were measured in order to partition the elastance (Ers) and flow resistance (Rrs) of the total respiratory system into the lung and chest wall components. Ers averaged (+/- SD) 23.0 +/- 4.9 cmH2O X l-1, while the corresponding values of pulmonary (EL) and chest wall (EW) elastance were 14.3 +/- 3.2 and 8.7 +/- 3.0 cmH2O X l-1, respectively. Intrinsic Rrs (upper airways excluded) averaged 2.3 +/- 0.2 cmH2O X l-1 X s, the corresponding values for pulmonary (RL) and chest wall (RW) flow resistance amounting to 0.8 +/- 0.4 and 1.5 +/- 0.5 cmH2O X l-1 X s, respectively. Ers increased relative to normal values in awake state, mainly reflecting increased EL. Rw was higher than previous estimates on awake seated subjects (approximately 1.0 cmH2O X l-1 X s). RL was relatively low, reflecting the fact that the subjects had received atropine (0.3-0.6 mg) and were breathing N2O. This is the first study in which both respiratory elastic and flow-resistive properties have been partitioned into lung and chest wall components in anesthetized humans.  相似文献   

10.
The effects of inspiratory flow rate and inflation volume on the resistive properties of the chest wall were investigated in six anesthetized paralyzed cats by use of the technique of rapid airway occlusion during constant flow inflation. This allowed measurement of the intrinsic resistance (Rw,min) and overall dynamic inspiratory impedance (Rw,max), which includes the additional pressure losses due to time constant inequalities within the chest wall tissues and/or stress adaptation. These results, together with our previous data pertaining to the lung (Kochi et al., J. Appl. Physiol. 64: 441-450, 1988), allowed us to determine Rmin and Rmax of the total respiratory system (rs). We observed that 1) Rw,max and Rrs,max exhibited marked frequency dependence; 2) Rw,min was independent of flow (V) and inspired volume (delta V), whereas Rrs,min increased linearly with V and decreased with increasing delta V; 3) Rw,max decreased with increasing V, whereas Rrs,max exhibited a minimum value at a flow rate substantially higher than the resting range of V; 4) both Rw,max and Rrs,max increased with increasing delta V. We conclude that during resting breathing, flow resistance of the chest wall and total respiratory system, as conventionally measured, includes a significant component reflecting time constant inequalities and/or stress adaptation phenomena.  相似文献   

11.
In six sedated, anesthetized, paralyzed, and mechanically ventilated guinea pigs, total respiratory system (RT,rs), lung, and chest wall resistances and respiratory system (Est,rs), lung, and chest wall (Est,w) elastances were determined before and after longitudinal laparotomy. Furthermore the resistances were also split into their initial and difference components, with the former reflecting the Newtonian resistances and the latter representing the viscoelastic/inhomogeneous pressure dissipations in the system. For such purpose the end-inflation occlusion during constant inspiratory flow method was used. During laparotomy, a statistically significant increase in respiratory system difference resistance (from 0.086 to 0.101 cmH2O.ml-1.s) significantly augmented RT,rs (from 0.157 to 0.167 cmH2O.ml-1.s). The former was entirely secondary to a significant increase in chest wall difference resistance (0.019 to 0.034 cmH2O.ml-1.s), which naturally raised chest wall total resistance (from 0.030 to 0.047 cmH2O.ml-1.s). Est,rs and Est,w also increased (14.7 and 13.1%, respectively) after abdominal incision. It can be concluded that the midline xiphipubic laparotomy accompanied by the bilateral ventrodorsal infracostal incision increases RT,rs as a consequence of augmented chest wall difference resistance and Est,rs as a result of higher Est,w.  相似文献   

12.
Elashoff RM  Li G  Li N 《Biometrics》2008,64(3):762-771
Summary .   In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel ( Prentice et al., 1978 , Biometrics 34, 541–554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.  相似文献   

13.
Dependences of the mechanical properties of the respiratory system on frequency (f) and tidal volume (VT) in the normal ranges of breathing are not clear. We measured, simultaneously and in vivo, resistance and elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) of five healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz) delivered at a constant mean lung volume. Each dog showed the same f and VT dependences. The Ers and Ecw increased with increasing f to 1 Hz and decreased with increasing VT up to 200 ml. Although EL increased slightly with increasing f, it was independent of VT. The Rcw decreased from 0.2 to 2 Hz at all VT and decreased with increasing VT. Although the RL decreased from 0.2 to 0.6 Hz and was independent of VT, at higher f RL tended to increase with increasing f and VT (i.e., as peak flow increased). Finally, the f and VT dependences of Rrs were similar to those of Rcw below 0.6 Hz but mirrored RL at higher f. These data capture the competing influences of airflow nonlinearities vs. tissue nonlinearities on f and VT dependence of the lung, chest wall, and total respiratory system. More specifically, we conclude that 1) VT dependences in Ers and Rrs below 0.6 Hz are due to nonlinearities in chest wall properties, 2) above 0.6 Hz, the flow dependence of airways resistance dominates RL and Rrs, and 3) lung tissue behavior is linear in the normal range of breathing.  相似文献   

14.
The effect of increasing arterial partial pressure of CO2 (PaCO2) on respiratory mechanics was investigated in six anesthetized, paralyzed cats ventilated by constant-flow inflation. Respiratory mechanics were studied after end-inspiratory occlusions. Zero frequency resistance (Rmax), infinite frequency resistance (Rmin), and static elastance (Est) were calculated for the respiratory system, lung, and chest wall. Alveolar ventilation was manipulated by the addition of dead space to achieve a range of PaCO2 values of 29.3-87.3 mmHg. Cats did not become hypoxic during the experiment. Under control conditions marked frequency dependence in Rmax, Rmin, and Est of the respiratory system, lungs, and chest wall was demonstrated. The chest wall contributed 50% of the total resistance of the respiratory system. With increasing PaCO2 the only resistance observed to increase was Rmax of the lung (P less than 0.01). There were also no changes in the static elastic properties of either the lungs or the chest wall. These results suggest that hypercapnia increases resistance by changes in the lung periphery and not in the conducting airways.  相似文献   

15.
In six spontaneously breathing anesthetized dogs (pentobarbital sodium, 30 mg/kg) airflow, volume, and tracheal and esophageal pressures were measured. The active and passive mechanical properties of the total respiratory system, lung, and chest wall were calculated. The average passive values of respiratory system, lung, and chest wall elastances amounted to, respectively, 50.1, 32.3, and 17.7 cmH2O X l-1. Resistive pressure-vs.-flow relationships for the relaxed respiratory system, lung, and chest wall were also determined; a linear relationship was found for the former (the total passive intrinsic resistance averaged 4.1 cmH2O X l-1 X s), whereas power functions best described the others: the pulmonary pressure-flow relationship exhibited an upward concavity, which for the chest wall presented an upward convexity. The average active elastance and resistance of the respiratory system were, respectively, 64.0 cmH2O X l-1 and 5.4 cmH2O X l-1 X s. The greater active impedance reflects pressure losses due to force-length and force-velocity properties of the inspiratory muscles and those due to distortion of the respiratory system from its relaxed configuration.  相似文献   

16.
We investigated the intrathoracic contributions to the caudal mediastinal lymph node (CMN) efferent lymph in 12 anesthetized sheep after removing possible systemic contributions from below the diaphragm. We interrupted various pathways that may send lymph to the CMN (chest wall, esophagus, lung). Because the experiment is destructive, we did the resections in various combinations and waited 1 h between steps. Base-line CMN efferent lymph flow averaged 0.90 +/- 0.52 g/15 min (mean +/- SD). Cutting the pulmonary ligaments bilaterally caused lymph flow to decrease by an average of 58%. In five sheep, cauterizing around the lung hila reduced lymph flow by 16% of base line, cauterizing along the esophagus reduced lymph flow by 18% of base line, and cauterizing along the chest wall increased lymph flow by 6% of base line. After complete isolation of the node, except for the bronchoesophageal artery, dorsal mediastinal vein, and CMN efferent duct, 14% of base-line flow remained. The lymph-to-plasma total protein concentration ratios did not change significantly with any procedure. Under the conditions of our experiments, approximately 74% of base-line intrathoracic CMN efferent flow comes from the lung.  相似文献   

17.
To assess incidence and magnitude of the "lower inflection point" of the chest wall, the sigmoidal equation was used in 36 consecutive patients intubated and mechanically ventilated with acute lung injury (ALI). They were 21 primary and 5 secondary ALI, 6 unilateral pneumonia, and 4 cardiogenic pulmonary edema. The lower inflection point was estimated as the point of maximal compliance increase. The low constant flow inflation method and esophageal pressure were used to partition the volume-pressure curves into their chest wall and lung components on zero end-expiratory pressure. The sigmoidal equation had an excellent fit with coefficients of determination >0.90 in all instances. The point of maximal compliance increase of the chest wall ranged from 0 to 8.3 cmH2O (median 1 cmH2O) with no difference between ALI groups. The chest wall significantly contributed to the lower inflection point of the respiratory system in eight patients only. The occurrence of a significant contribution of the chest wall to the lower inflection point of the respiratory system is lower than anticipated. The sigmoidal equation is able to determine precisely the point of the maximal compliance increase of lung and chest wall.  相似文献   

18.
Using the technique of rapid airway occlusion during constant-flow inflation, we studied the effects of inflation volume, different baseline tidal volumes (10, 20, and 30 ml/kg), and vagotomy on the resistive and elastic properties of the lungs and chest wall in six anesthetized tracheotomized paralyzed mechanically ventilated cats. Before vagotomy, airway resistance decreased significantly with increasing inflation volume at all baseline tidal volumes. At any given inflation volume, airway resistance decreased with increasing baseline tidal volume. After vagotomy, airway resistance decreased markedly and was no longer affected by baseline tidal volume. Prevagotomy, pulmonary tissue resistance increased progressively with increasing lung volume and was not affected by baseline tidal volume. Pulmonary tissue resistance decreased postvagotomy. Chest wall tissue resistance increased during lung inflation but was not affected by either baseline tidal volume or vagotomy. The static volume-pressure relationships of the lungs and chest wall were not affected by either baseline tidal volume or vagotomy. The data were interpreted in terms of a linear viscoelastic model of the respiratory system (J. Appl. Physiol. 67: 2276-2285, 1989).  相似文献   

19.
Chest wall involvement from lung malignancy presents technical challenges for a minimally invasive surgical approach. Recently, new thoracoscopic rib cutting instrumentation has been developed and may offer a safe and efficient resection. Compared with thoracotomy, thoracoscopic lung and chest wall resection may potentially lower the morbidity associated with chest wall resection by thoracotomy. We present a case of thoracoscopic lobectomy with an en bloc chest wall resection.  相似文献   

20.
Partitioning of respiratory mechanics in mechanically ventilated patients.   总被引:3,自引:0,他引:3  
In ten mechanically ventilated patients, six with chronic obstructive pulmonary disease (COPD) and four with pulmonary edema, we have partitioned the total respiratory system mechanics into the lung (l) and chest wall (w) mechanics using the esophageal balloon technique together with the airway occlusion technique during constant-flow inflation (J. Appl. Physiol. 58: 1840-1848, 1985). Intrinsic positive end-expiratory pressure (PEEPi) was present in eight patients (range 1.1-9.8 cmH2O) and was due mainly to PEEPi,L (80%), with a minor contribution from PEEPi,w (20%), on the average. The increase in respiratory elastance and resistance was determined mainly by abnormalities in lung elastance and resistance. Chest wall elastance was slightly abnormal (7.3 +/- 2.2 cmH2O/l), and chest wall resistance contributed only 10%, on the average, to the total. The work performed by the ventilator to inflate the lung (WL) averaged 2.04 +/- 0.59 and 1.25 +/- 0.21 J/l in COPD and pulmonary edema patients, respectively, whereas Ww was approximately 0.4 J/l in both groups, i.e., close to normal values. We conclude that, in mechanically ventilated patients, abnormalities in total respiratory system mechanics essentially reflect alterations in lung mechanics. However, abnormalities in chest wall mechanics can be relevant in some COPD patients with a high degree of pulmonary hyperinflation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号