首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites that existed in the coding sequence of genes prior to the insertion of introns. To do this, we experimentally identified nine cryptic splice sites within the coding sequence of actin genes from humans, Arabidopsis, and Physarum by inactivating their normal intron splice sites. We found that seven of these cryptic splice sites correspond exactly to the positions of exon junctions in actin genes from other species. Because actin genes are highly conserved, we could conclude that at least seven actin introns are flanked by cryptic splice sites, and from the phylogenetic evidence, we could also conclude that actin introns were inserted into these cryptic splice sites during evolution. Furthermore, our results indicate that these insertion events were dependent upon the splicing machinery. Because most introns are flanked by similar sequences, our results are likely to be of general relevance.  相似文献   

2.
Histones and the cytoskeletal components tubulin and actin all act as thermal ratchets, using the energy present in Brownian motion to do work. All three also bind to nucleotides. Here we suggest that histones, tubulin, and actin derive from a common ancestral protein. There is some sequence similarity between histone 2A and the bacterial tubulin homologue FtsZ. Histones and actin also share some sequence similarity in the nucleotides and at phosphate-binding sites. Thus, actin and tubulin may also be related, although this is not obvious from sequence analysis. Indeed, actin and tubulin are closely functionally related and cooperate in many cellular processes. Interestingly, recent advances in nanotechnology suggest that thermal ratchets may be able to impart lifelike properties; thus, the evolution of the ancestral histone, tubulin, and actin thermal ratchet may have been crucial in the development of complexity in living organisms.  相似文献   

3.
4.
Intron/exon structure of the chicken pyruvate kinase gene   总被引:15,自引:0,他引:15  
N Lonberg  W Gilbert 《Cell》1985,40(1):81-90
The chicken pyruvate kinase gene is interrupted by at least ten introns, including nine introns within the coding region. We compare the structure of this gene with the three-dimensional protein structure of the homologous cat muscle enzyme. The introns are not randomly placed--they divide the coding sequence into fairly uniformly sized pieces encoding discrete elements of secondary structure. The introns tend to fall at interruptions between stretches of alpha-helix or beta-sheet residues, and each of the six exons that contribute to the barrel-shaped central domain include one or two repeats of a simple unit, an alpha-helix plus a beta strand. This structure suggests that introns were not inserted into a previously uninterrupted coding sequence, but instead are products of the evolution of the first pyruvate kinase gene. We have found some sequence homology between a segment of pyruvate kinase and the structurally homologous mononucleotide binding fold of alcohol dehydrogenase. The superposition of these two regions aligns an intron from the maize alcohol dehydrogenase gene four nucleotides from an intron in the chicken pyruvate kinase gene.  相似文献   

5.
The polymerase chain reaction was used to amplify and clone an actin gene fragment from Paramecium tetraurelia. This DNA fragment was 1,138 bp long, more than 96% of the actin coding sequence, and contained four in-frame UAA codons and two small introns located at positions unique in the actin intron catalogue. This is the first report for the phylum Ciliophora of an actin gene containing introns. The deduced amino acid sequence of this actin fragment shared 58-77% identity with other actins. When compared with rabbit α-muscle actin, similarities were observed mainly in subdomains 1 and 3, whereas subdomains 2 and 4 appeared to be more divergent.  相似文献   

6.
The two most frequently occurring explanations for the existence and distribution of introns in the genes of different species are: (1) introns are remnants of the original genetic material. (2) Introns were introduced during evolution. We construct mathematical models corresponding to these two explanations, and calculate the probabilities that the intron distribution in genes from different species coding for actin, alpha-tubulin, triosephosphate isomerase and superoxide dismutase are described by these models. In both models, the branch lengths as well as the structure of the corresponding evolutionary tree is taken into account. Every branch in the evolutionary tree is assumed to have its own individual rate of loss of introns for the first model and rate of gain of introns for the second model. These rate constants are estimated from the actual number of introns. Using the rate constants we stimulate the intron evolution and calculate the probabilities that the actual intron arrangements are produced. The results for actin and alpha-tubulin, which are the two genes we have the most data for, favor the model corresponding conjecture (1), i.e. the idea that introns are old. This contradicts the results from an earlier attempt to model intron evolution where almost the same data was used (Dibb & Newman, 1989, EMBO J. 8, 2015-2021).  相似文献   

7.
We report the isolation and characterization of an Echinococcus granulosus gene that codes for a protein with actin filament fragmenting and nucleating activities (EgAFFP). The genomic region corresponding to the EgAFFP gene presents a coding sequence of 1110 bp that is interrupted by eight introns. The EgAFFP deduced amino acid sequence is about 40% homologous to those of several members of the gelsolin family, such as Physarum polycephalum fragmin, Dictyostelium discoideum severin, and Lumbricus terrestris actin modulator. As do other proteins of the same family, EgAFFP presents three repeated domains, each one characterized by internal conserved amino acid motifs. Assays with fluorescence-labeled actin showed that the full-length recombinant EgAFFP effectively binds actin monomers in both a calcium-dependent and calcium-independent manner and also presents actin nucleating and severing activities.  相似文献   

8.
9.
编码序列和非编码序列的3-tuple分布特征   总被引:2,自引:0,他引:2  
傅强  钱敏平  陈良标  朱玉贤 《遗传学报》2005,32(10):1018-1026
非编码序列,特别是内含子的起源,是一个重要的悬而未决的问题。首先通过计算模式生物的编码序列和非编码序列的不同阅读框中3-tupie的频率分布,发现编码区中不同阅读框具有十分不同的3-tuple分布,而在非编码区中,不同阅读框的3-tuple分布几乎相等,并且这一性质不具有物种依赖性。为了描述分布差异的程度,引进夏量一对称相对熵,并通过比较原核生物和真核生物,发现无论是编码区还是非编码区,原核生物都具有比真核生物更高的SRE值。进一步研究表明,某一生物的SRE值与该生物全基因组中编码区所占的百分比存在一定的相关性(相关系数为0.86)。计算机模拟进化实验发现,2%的突变就足以使典型的嗯核生物编码区高SRE值变为真核生物内含子区特有的低SRE值。比对数据库中已经注释的内含子和编码区序列,证明确实有一部分与编码区具有很高同源性的内含子序列。实验表明,至少部分真核生物的内含子可能起源于编码序列,同时也说明SRE可能被用于研究物种基因组序列的进化。  相似文献   

10.
Spliceosomal introns are present in almost all eukaryotic genes, yet little is known about their origin and turnover in the majority of eukaryotic phyla. There is no agreement whether most introns are ancestral and have been lost in some lineage or have been gained recently. We addressed this question by analyzing the spatial and temporal distribution of introns in actins of foraminifera, a group of testate protists whose exceptionally rich fossil record permits the calibration of molecular phylogenies to date intron origins. We identified 24 introns dispersed along the sequence of two foraminiferan actin paralogues and actin deviating proteins, an unconventional type of fast-evolving actin found in some foraminifera. Comparison of intron positions indicates that 20 of 24 introns are specific to foraminifera. Four introns shared between foraminifera and other eukaryotes were interpreted as parallel gains because they have been found only in single species belonging to phylogenetically distinctive lineages. Moreover, additional recent intron gain due to the transfer between the actin paralogues was observed in two cultured species. Based on a relaxed molecular clock timescale, we conclude that intron gains in actin took place throughout the evolution of foraminifera, with the oldest introns inserted between 550 and 500 million years ago and the youngest ones acquired less than 100 million years ago. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

11.
Proto-splice site model of intron origin   总被引:5,自引:0,他引:5  
It is proposed that nuclear pre-mRNA introns (classical introns) were first generated as by-products during the evolution of alternative splicing. They were formed whenever two splice sites within the coding sequence of ancestral genes were used at a frequency that removed the coding constraint from the intervening sequence. Once introns had evolved, it is suggested that they were spread by the splicing machinery which inserted them into proto or cryptic-splice sites of other genes by reverse splicing, so giving rise to genes that have introns yet are not alternatively spliced. It is argued that 5' and 3' splice sites evolved from common ancestral splice sites, referred to as proto-splice sites, that were bidirectional and had a core consensus sequence of C or A, A, G, R, which remains today as the immediate flanking sequence of most introns. The ancestral splicing machinery, although inefficient, would have been capable of generating vast mRNA diversity by splicing between proto-splice sites. Natural selection would be expected to have preserved mutations that increased the amounts of advantageously spliced mRNA. It is argued that this process drove the evolution of present 5' and 3' splice sites from a subset of proto-splice sites and also drove the evolution of a more efficient splicing machinery. The positions of most introns that evolved directly from the coding sequence would be expected to correlate with protein structure.  相似文献   

12.
13.
An appreciable fraction of introns is thought to have some function, but there is no obvious way to predict which specific intron is likely to be functional. We hypothesize that functional introns experience a different selection regime than non-functional ones and will therefore show distinct evolutionary histories. In particular, we expect functional introns to be more resistant to loss, and that this would be reflected in high conservation of their position with respect to the coding sequence. To test this hypothesis, we focused on introns whose function comes about from microRNAs and snoRNAs that are embedded within their sequence. We built a data set of orthologous genes across 28 eukaryotic species, reconstructed the evolutionary histories of their introns and compared functional introns with the rest of the introns. We found that, indeed, the position of microRNA- and snoRNA-bearing introns is significantly more conserved. In addition, we found that both families of RNA genes settled within introns early during metazoan evolution. We identified several easily computable intronic properties that can be used to detect functional introns in general, thereby suggesting a new strategy to pinpoint non-coding cellular functions.  相似文献   

14.
15.
《Gene》1996,168(1):117-121
The genomic and complementary DNA sequences were determined for the unique actin-encoding gene in Chlamydomonas reinhardtii (Cr). The deduced amino acid (aa) sequence of this actin was similar to most known actin sequences, with the highest identity (98.1%) being with that of Volvox carteri actin. The Cr actin-encoding gene has one intron in the 5′-untranslated region and eight introns in the coding region. The latter eight introns occur at the same positions as those in the V. carteri actin-encoding gene. The 5′-upstream region contains four short stretches of sequence similar to the so-called ‘tub box’, a characteristic sequence proposed to be responsible for the regulation of synthesis of various axonemal proteins upon deflagellation and during the cell cycle. Southern blot analysis indicated that the Cr genome has only a single actin-encoding gene. An antibody specific for the 11-aa peptide corresponding to the N-terminal sequence of this actin was found to react with a 43-kDa protein associated with flagellar inner-arm dynein. These findings indicate that a single actin functions in both the cytoplasm and flagella of this organism.  相似文献   

16.
We have isolated, in guinea-pig endometrial cells, an estrogen-induced 1.8 kb RNA called gec1. Screening of a guinea-pig genomic library led to identification of gec1 gene consisting of 4 exons and 3 introns. Exon 1 contains the 5'UTR and the ATG initiation codon. A guinea-pig gec1 cDNA was obtained by 5'-RACE. The 351 bp coding sequence shares 76.8% identity with that of the human GABARAP 924 bp cDNA while UTRs of the two cDNAs differ. A gec1 probe from the 3'UTR revealed a 1.9 kb mRNA in human tissues and a human GEC1 cDNA was isolated from placenta. Its coding sequence shares 93 and 79% identity with that of guinea-pig gec1 and human GABARAP, respectively. The human and guinea-pig GEC1 proteins have 100% identity. GEC1 and GABARAP proteins have 87% identity and N terminus featuring a tubulin binding motif. Thus, estrogen-regulated gec1 is a new gene which could encode a microtubule-associated protein.  相似文献   

17.
The expression of tubulin polypeptides in animal cells is controlled by an autoregulatory mechanism whereby increases in the tubulin subunit concentration result in rapid and specific degradation of tubulin mRNAs. We have now determined that the sequences that are necessary and sufficient to specify mouse beta-tubulin mRNAs as substrates for this autoregulated instability reside within the first 13 translated nucleotides (which encode the first four beta-tubulin amino acids Met-Arg-Glu-Ile). This domain has been functionally conserved throughout evolution, inasmuch as sequences isolated from the analogous region of human, chicken, and yeast beta-tubulin mRNAs also confer autoregulation. Further, for an RNA to be a substrate for regulation, not only must it carry the 13-nucleotide coding sequence, but it must also be ribosome bound and its translation must proceed 3' to codon 41.  相似文献   

18.
19.
Application of learning techniques to splicing site recognition   总被引:2,自引:0,他引:2  
J Quinqueton  J Moreau 《Biochimie》1985,67(5):541-547
Most genes of eukaryotic genomes are disrupted by introns. The application of a learning technique which uses both statistic and syntactic analysis lead to the establishment of logical rules enabling the recognition of intron/exon junctions between uncoding and coding sequences. The rules were tested on rat actin gene sequences containing some or all of the introns and 50 exon nucleotides on either side of the intron. The results show good recognition of the excision site. This recognition is more ambiguous when the sequence is short; for the acceptor sequence it presents a good selection. The learning achieved with both the donor and acceptor sequence does not lead to recognition. This result indicates that it is not the relationship between donor and acceptor sites in the same intron which determines sequence selection or the splicing mechanism.  相似文献   

20.
Recombinant phages that carry the human smooth muscle (enteric type) gamma-actin gene were isolated from human genomic DNA libraries. The amino acid sequence deduced from the nucleotide sequence matches those of cDNAs but differs from the protein sequence previously reported at one amino acid position, codon 359. The gene containing one 5' untranslated exon and eight coding exons extends for 27 kb on human chromosome 2. The intron between codons 84 and 85 (site 3) is unique to the two smooth muscle actin genes. In the 5' flanking region, there are several CArG boxes and E boxes, which are regulatory elements in some muscle-specific genes. Hybridization with the 3' untranslated region, which is specific for the human smooth muscle gamma-actin gene, suggests the single gene in the human genome and specific expressions in enteric and aortic tissues. From characterized molecular structures of the six human actin isoform genes, we propose a hypothesis of evolutionary pathway of the actin gene family. A presumed ancestral actin gene had introns at least sites 1, 2, and 4 through 8. Cytoplasmic actin genes may have directly evolved from it through loss of introns at sites 5 and 6. However, through duplication of the ancestral actin gene with substitutions of many amino acids, a prototype of muscle actin genes had been created. Subsequently, striated muscle actin and smooth muscle actin genes may have evolved from this prototype by loss of an intron at site 4 and acquisition of a new intron at site 3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号