首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fei Li  Zhao-Jun Han 《Génome》2002,45(6):1134-1141
Two acetylcholinesterase (AChE) genes, Ace1 and Ace2, have been cloned from cotton aphid, Aphis gossypii Glover, using the rapid amplification of cDNA ends (RACE) technique. To the best of our knowledge, this should be the first direct molecular evidence that multiple AChE genes exist in insects. The Ace1 gene was successfully amplified along its full length of 2371 bp. The open reading frame is 2031 bp long and encodes 676 amino acids (GenBank accession No. AF502082). The Ace2 gene was amplified as a mega-fragment of 2130 bp lacking part of 5'-end untranslated region (UTR). The open reading frame is 1992 bp long and ecodes a protein of 664 amino acids (GenBank accession No. AF502081). Both genes have the conserved amino acids and features shared by the AChE family, but share only 35% identity in amino acid sequence. The Ace1 gene is highly homologous to the AChE gene of Schizaphis graminum (AF321574) with 95% identity, and Ace2 to that of Myzus persicae (AF287291) with 92% identity. Phylogenetic analysis showed that the two cloned AChEs of A. gossypii are different in evolution. The phylogenetic tree generated by the PHYLIP program package inferred that AChE2 of A. gossypii is a more ancestral form of AChE. Homology modeling of structures using Torpedo californica (2ACE_) and Drosophila melanogaster (1Q09:A) native acetylcholinesterase structure as main template indicated that the two AChEs of Aphis gossypii might have different three-dimensional structures. Alternative splicing of Ace1 near the 5'-end resulting in two proteins differing by the presence or absence of a fragment of four amino acids is also reported.  相似文献   

2.
Insensitive acetylcholinesterase (AChE) has been shown to be responsible for resistance to organophosphates and carbamates in a number of arthropod species. Some arthropod genomes contain a single Ace gene, while others including mosquitoes contain two genes, but only one confers insecticide resistance. Here we report the isolation of the full-length cDNA and characterization of the complete genomic DNA sequence for the Ace1 gene in the yellow fever mosquito, Aedes aegypti. The Ace1 homolog in other mosquito species has been associated with insecticide resistance. The full-length cDNA consists of 2721bp and contains a 2109bp open reading frame that encodes a 702 amino acid protein. The amino acid sequence is highly conserved with that of other mosquitoes, including greater than 90% identity with Culex spp. and about 80% identity with Anopheles gambiae. The genomic DNA sequence includes 138,970bp and consists of eight exons with seven introns ranging from 59 to 114,350bp. Exons 2 and 8 show reduced amino acid conservation across mosquito species, while exons 3-7 are highly conserved. The Ace1 introns in Ae. aegypti reflect a high frequency of repetitive sequences that comprise about 45% of the total intron sequence. The Ace1 locus maps to the p-arm of chromosome 3, which corresponds to the orthologous genome regions in Culex spp. and An. gambiae.  相似文献   

3.
Purified acetylcholinesterase from Drosophila melanogaster is composed of a 55 kDa and a 16 kDa noncovalently associated subunit. Cleavage of disulfide bonds reveals that two 55 kDa polypeptides are linked together in native dimeric AChE. Western blots with two antibodies directed against the N- and C-termini of the predicted AChE primary sequence show that the 55 and 16 kDa polypeptides originate from proteolysis of the same precursor encoded by the Ace locus.  相似文献   

4.
Two acetylcholinesterase genes, Ace1 and Ace2, have been fully cloned and sequenced from both organophosphate-resistant and susceptible clones of cotton aphid. Comparison of both nucleic acid and deduced amino acid sequences revealed considerable nucleotide polymorphisms. Further study found that two mutations occurred consistently in all resistant aphids. The mutation F139L in Ace2 corresponding to F115S in Drosophila acetylcholinesterase might reduce the enzyme sensitivity and result in insecticide resistance. The other mutation A302S in Ace1 abutting the conserved catalytic triad might affect the activity and insecticide sensitivity of the enzyme. Phylogenetic analysis showed that insect acetylcholinesterases fall into two subgroups, of which Ace1 is the paralogous gene whereas Ace2 is the orthologous gene of Drosophila AChE. Both subgroups contain resistance-associated AChE genes. To avoid confusion in the future work, a nomenclature of insect AChE is also suggested in the paper.  相似文献   

5.
杀虫药剂抗性家蝇品系乙酰胆碱酯酶基因的特征分析   总被引:6,自引:0,他引:6  
乙酰胆碱酯酶(AChE)是有机磷和氨基甲酸酯类杀虫药剂的作用靶标,这两大类杀虫药剂的广泛应用导致了昆虫对抗性的选择。靶标的修饰是某些昆虫产生抗性的分于机理,这种抗性是和AChE的变更型相关的,这些变更型的酶显示出对杀虫药剂的不被感性。利用RT-PCR和Streptavidin偶联磁珠技术从两种抗性家蝇(Musca domestica)品系D3和Kash中分别分离了AChE基因并测定了其按苷酸颅序。eDNA的可读框长2082bp.由此推导出了AChE的氨基酸顺序,通过与敏感家蝇品系Cooper的比较,发现了一些核苷酸顺序差异和4个氨基酸点突变,其中3个替代可能与杀虫药剂不敏感性有关。这一结果表明D3和Kash均属于CH2抗性类型。  相似文献   

6.
We have examined the requirement for normal acetylcholine metabolism in the formation and maintenance of the larval and adult central nervous system in Drosophila melanogaster. By using mutations at the Ace and Cha loci, which respectively encode the degradative and synthetic enzymes for acetylcholine (ACh), acetylcholinesterase (AChE), and choline acetyltransferase (ChAT), we have been able to disrupt acetylcholine metabolism in situ. An ultrastructural analysis of embryonic nervous tissue lacking either enzymatic function has indicated that while neither function is required for the formation of the larval central nervous system, each is required for the subsequent maintenance of its structural integrity and function. Using temperature sensitive mutations at the Cha locus, the normal developmental profile of ChAT activity during the late larval and pupal stages was disrupted. Subsequent examination of the morphology and behavior of the treated animals has indicated that normal acetylcholine metabolism is not required for the initial formation of the adult nervous system, but is required for the subsequent maintenance of its structural integrity and function. The results obtained in these studies are discussed with respect to data presented on the adult distribution of the cholinergic markers' AChE activity and ChAT immunoreactivity. The projections of adult peripheral neurons innervating Ace+ tissue from Ace cuticular clones has been examined to address the nature of the structure of Ace neuropil. Normal projections are apparently achieved and maintained, suggesting that the defects seen in adult Ace mosaics arise as an aberrant intracellular organization of morphologically normal cells.  相似文献   

7.
8.
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphorous (OP) and carbamate insecticides. Ace mutations have been identified in OP resistants strains of Drosophila melanogaster. However, in the Australian sheep blowfly, Lucilia cuprina, resistance in field and laboratory generated strains is determined by point mutations in the Rop-1 gene, which encodes a carboxylesterase, E3. To investigate the apparent bias for the Rop-1/E3 mechanism in the evolution of OP resistance in L. cuprina, we have cloned the Ace gene from this species and characterized its product. Southern hybridization indicates the existence of a single Ace gene in L. cuprina. The amino acid sequence of L. cuprina AChE shares 85.3% identity with D. melanogaster and 92.4% with Musca domestica AChE. Five point mutations in Ace associated with reduced sensitivity to OP insecticides have been previously detected in resistant strains of D. melanogaster. These residues are identical in susceptible strains of D. melanogaster and L. cuprina, although different codons are used. Each of the amino acid substitutions that confer OP resistance in D. melanogaster could also occur in L. cuprina by a single non-synonymous substitution. These data suggest that the resistance mechanism used in L. cuprina is determined by factors other than codon bias. The same point mutations, singly and in combination, were introduced into the Ace gene of L. cuprina by site-directed mutagenesis and the resulting AChE enzymes expressed using a baculovirus system to characterise their kinetic properties and interactions with OP insecticides. The K(m) of wild type AChE for acetylthiocholine (ASCh) is 23.13 microM and the point mutations change the affinity to the substrate. The turnover number of Lucilia AChE for ASCh was estimated to be 1.27x10(3) min(-1), similar to Drosophila or housefly AChE. The single amino acid replacements reduce the affinities of the AChE for OPs and give up to 8.7-fold OP insensitivity, while combined mutations give up to 35-fold insensitivity. However, other published studies indicate these same mutations yield higher levels of OP insensitivity in D. melanogaster and A. aegypti. The inhibition data indicate that the wild type form of AChE of L. cuprina is 12.4-fold less sensitive to OP inhibition than the susceptible form of E3, suggesting that the carboxylesterases may have a role in the protection of AChE via a sequestration mechanism. This provides a possible explanation for the bias towards the evolution of resistance via the Rop-1/E3 mechanism in L. cuprina.  相似文献   

9.
Cloned cDNAs encoding both subunits of Drosophila melanogaster casein kinase II have been isolated by immunological screening of lambda gt11 expression libraries, and the complete amino acid sequence of both polypeptides has been deduced by DNA sequencing. The alpha cDNA contained an open reading frame of 336 amino acid residues, yielding a predicted molecular weight for the alpha polypeptide of 39,833. The alpha sequence contained the expected semi-invariant residues present in the catalytic domain of previously sequenced protein kinases, confirming that it is the catalytic subunit of the enzyme. Pairwise homology comparisons between the alpha sequence and the sequences of a variety of vertebrate protein kinase suggested that casein kinase II is a distantly related member of the protein kinase family. The beta subunit was derived from an open reading frame of 215 amino acid residues and was predicted to have a molecular weight of 24,700. The beta subunit exhibited no extensive homology to other proteins whose sequences are currently known.  相似文献   

10.
The regulation of acetylcholinesterase (AChE) in the human brain has been approached at the level of the genome. A human DNA fragment of the length of 2 600 nucleotides was isolated from a human genomic library. This DNA fragment, designated Huache 1R, bears sequence homology to a DNA fragment from the vicinity of the Drosophila Ace region, that controls AChE biosynthesis (Soreq et al., 1985). Polyadenylated RNA from human brain was hybridized with Huache 1R DNA, eluted and microinjected into Xenopus oocytes in the absence or presence of 35S-methionine. The hybrid-selected RNA induced the biosynthesis of active AChE in the oocytes. Immunoprecipitation of labeled oocyte proteins with monoclonal antibodies against human AChE (Fambrough et al., 1982) resulted in the selective precipitation of an 85 000 Mr induced protein, with a similar size to that of the subunit of human brain AChE. These findings show that the Huache 1R DNA hybridizes with human brain AChEmRNA. The Huache 1R fragment was employed to select a collection of 12 homologous phage-cloned human genomic DNA fragments with different restriction patterns. A cDNA library in pBR322 plasmids was prepared from polyadenylated RNA isolated from embryonic brain. This library was also screened using labeled Huache 1R DNA as a probe. Forty-two out of 37 000 colonies were found positive. Several of these were selected for further analyses. Hybrid-selection experiments using DNA from two of the positive plasmid clones showed that these cDNAs also hybridize with AChEmRNA from human brain. DNA blot hybridization revealed homologies between these cDNA chains and the original Huache 1 fragment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Drosophila has a single glycoinositol phospholipid (GPI)-anchored form of acetylcholinesterase (AChE) encoded by the Ace locus. To assess the role that GPI plays in the physiology, of AChE, we have replaced the wild-type GPI-AChE with a chimeric transmembrane form (TM-AChE) in the nervous system of the fly. Ace null alleles provided a genetic background completely lacking in endogenous GPI-AChE, and Ace minigene P transposon constructs were used to express both GPI- and TM-AChE forms in the tissues where AChE is normally expressed. Control experiments with the GPI-AChE minigene demonstrated a threshold between 9 and 12% of normal AChE activity for adult viability. Ace mutant flies were rescued by GPI-AChE minigene lines that expressed 12-40% of normal activity and were essentially unchanged from wild-type flies in behavior. TM-AChE minigene lines were able to rescue Ace null alleles, although with a slightly higher threshold than that for GPI-AChE. Although rescued flies expressing GPI-AChE at a level of 12% of normal activity were viable, flies expressing 13-16% of normal activity from the TM-AChE transgene died shortly after eclosion. Flies expressing TM-AChE at about 30% of normal levels were essentially unchanged from wild-type flies in gross behavior but had a reduced lifespan secondary to subtle coordination defects. These flies also showed reduced locomotor activity and performed poorly in a grooming assay. However, light level and electron microscopic immunocytochemistry showed no differences in the localization of GPI- and TM-AChE. Furthermore, endogenous and ectopic-induced expression of both AChEs in epithelial tissues of the adult and embryo, respectively, showed that they were sorted identically. Most epithelial cells sorted GPI- and TM-AChE to the apical surface, but cuticle-secreting epithelia sorted both proteins basolaterally. Our data suggest that rather than having a primary role in protein sorting, the GPI anchor or AChE plays some other more subtle cellular role in neuronal physiology.  相似文献   

13.
We determined the nucleotide sequence of a 4.6-kb EcoRI fragment containing 70% of the rosy locus. In combination with information on the 5' sequence, the gene has been sequenced in entirety. rosy cDNAs have been isolated and intron/exon boundaries have been determined. We find an open reading frame which spans four exons and would encode a protein of 1335 amino acids. The molecular weight of the encoded protein (xanthine dehydrogenase), based on the amino acid translation, is 146,898 daltons which agrees well with earlier biophysical estimates. Characteristics of the protein are discussed.  相似文献   

14.
15.
The c-ski locus extends a minimum of 65 kb in the chicken genome and is expressed as multiple mRNAs resulting from alternative exon usage. Four exons comprising approximately 1.5 kb of cDNA sequence have been mapped within the chicken c-ski locus. However, c-ski cDNAs include almost 3 kb of sequence for which the exon structure was not defined. From our studies using the polymerase chain reaction and templates of RNA and genomic DNA, it is clear that c-ski cDNAs are encoded by a minimum of eight exons. A long 3' untranslated region is contiguous in the genome with the distal portion of the ski open reading frame such that exon 8 is composed of both coding and noncoding sequences. Exons 2 and 3 are separated by more than 25 kb of genomic sequence. In contrast, exons 3 through 8, representing more than half the length of c-ski cDNA sequences, are closely linked within 10 kb in the chicken genome.  相似文献   

16.
The acetycholinesterase gene ofAnopheles stephensi   总被引:10,自引:0,他引:10  
1. The acetylcholinesterase (AChE) gene from the important malaria vector Anopheles stephensi has been isolated by homology to the Drosophila acetylcholinesterase gene. 2. The complete sequence and intron-exon organization has been determined. The encoded protein has 69% identity to Drosophila AChE and 38 and 36% identity to Torpedo AChE and human butyrylcholinesterase, respectively.  相似文献   

17.
A series of overlapping cDNAs coding for mouse prothrombin (coagulation factor II) have been isolated and the composite DNA sequence has been determined. The complete prothrombin cDNA is 1,987 bp in length [excluding the poly(A) tail] and codes for 18 bp of 5' untranslated sequence, an open reading frame coding for 618 amino acids, a stop codon, and a 3' untranslated region of 112 bp followed by a poly(A) tail. The translated amino acid sequence predicts a molecular weight of 66,087, which includes 10 residues of gamma-carboxyglutamic acid. There are five potential N-linked glycosylation sites. Mouse prothrombin is 81.4% and 77.3% identical to the human and bovine proteins, respectively. Comparison of the cDNA coding for mouse prothrombin to the human and bovine cDNAs indicates 79.9% and 76.5% identity, respectively. Amino acid residues important for the structure and function of human prothrombin are conserved in the mouse and bovine proteins. In the adult mouse and rat, prothrombin is primarily synthesized in the liver, where is constitutes 0.07% of total mRNA as determined by solution hybridization analysis. The genetic locus for mouse prothrombin, Cf-2, has been mapped using an interspecies backcross and DNA fragment differences between the two species. The prothrombin locus lies on mouse chromosome 2, 1.8 +/- 1.3 map units proximal to the catalase locus. The gene order in this region is Cen-Acra-Cf-2-Cas-1-A-Tel. This localization extends the proximal boundary of the known region of homology between mouse chromosome 2 and human chromosome 11p from Cas-1 about 2 map units toward the centromere.  相似文献   

18.
19.
20.
杨之帆  何光存 《昆虫学报》2006,49(6):1034-1041
利用反转录聚合酶链式反应(RT_PCR)结合快速扩增cDNA末端(RACE)技术克隆了褐飞虱Nilaparvata lugens 乙酰胆碱酯酶基因cDNA。该cDNA全长2 467 bp,包含一个1 938 bp的开放阅读框(GenBank登录号AJ852420); 在推导出的646个氨基酸残基的前体蛋白中, N端的前30个氨基酸残基为信号肽,随后的616个氨基酸残基是成熟的乙酰胆碱酯酶序列,其预测的分子量为69 418 D。在一级结构中,形成催化活性中心的3个氨基酸残基(Ser242,Glu371和His485),以及在亚基内形成二硫键的6个半胱氨酸完全保守; 位于催化功能域的14个芳香族氨基酸中有10 个完全保守。该酶的氨基酸序列与黑尾叶蝉的同源性最高,达83%。对来自23种昆虫(包括褐飞虱)的30个乙酰胆碱酯酶的聚类分析显示,褐飞虱的乙酰胆碱酯酶与其中6个Ⅱ型乙酰胆碱酯酶(AChE2)同属一个支系; 此外,只存在于昆虫AChE2中的超变区及特异的氨基酸残基,也存在于褐飞虱的乙酰胆碱酯酶中。以上结果表明,所克隆的褐飞虱的乙酰胆碱酯酶基因是一个与黑腹果蝇的orthologous型基因同源的AChE2基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号