首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An inherited electrophoretic variant of prolidase (EC 3.4.13.9), also called peptidase 4 (PEP-4), has been discovered among inbred strains of mice. Analysis of progeny from reciprocal backcrosses established that the electrophoretic forms are expressed codominantly and that Pep-4 is located between the genes for glucosephosphate isomerase (Gpi-1) and pink-eyed dilution (p) on chromosome 7. These data define a region of conserved gene linkage between mouse chromosome 7 and human chromosome 19, as originally indicated by somatic cell hybrid studies, and imply that human prolidase (PEPD) is located in the region of human chromosome 19 pter q13.Research sponsored by the Office of Health and Environmental Research, U.S. Department of Energy, under Contract W-7405-eng-26 with the Union Carbide Corporation.By acceptance of this article, the publisher or recipient acknowledges the right of the U.S. Government to retain a nonexclusive, royalty-free license in and to any copyright covering the article.  相似文献   

3.
4.
5.
Summary In order to evaluate the role of glucose-phosphate isomerase (GPI) inFundulus heteroclitus, the isozymes and allozymes were purified and some of their physical and kinetic properties determined.Isozymes were purified from both liver (GPI-B) and muscle (GPI-A) tissue (Tables 1, 2). Gel filtration of the native enzyme and SDS-polyacrylamide gel electrophoresis indicated that all forms are dimers of approximately 110,000 Daltons (Figs. 4, 5). Although thermal stability studies revealed no differences between the allozymes, the isozymes were clearly different (Figs. 6, 7). Kinetic analysis showed further differences between isozymes inK m for substrate andK I for 6-phosphogluconate (Figs. 8, 9; Table 3). No significant differences were found between the allozymes of the B-locus under the conditions employed in this study.Based on the tissue specificities and the functional differences between isozymes, we propose a possible regulatory role for GPI-B inF. heteroclitus. The sensitivity of this isozyme to 6-phosphogluconate inhibition may allow GPI-B to act as a regulatory enzyme in the partitioning of carbon flow between glycolysis and the hexose monophosphate shunt.Abbreviations me -mercaptoethanol - F6P fructose-6-phosphate - G1P glucose-1-phosphate - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GPI glucosephosphate isomerase - HK hexokinase - HMP hexose monophosphate shunt - 6PG 6-phosphogluconate - PGM phosphoglucomutase Supported in part by: NSF grants DEB-76-19877 to D.A.P. and PCM 77-16838 to B.D.S., NIH Biomedical grant 5-50-7RR07-041 and a grant from the National Geographic Society. G.D.S. and R.V.B. are NIH trainees supported by a training grant (No. HD00139) to the Department of Biology, The Johns Hopkins University. This is contribution No. 1052 from the Department of Biology  相似文献   

6.
A. Tait 《Biochemical genetics》1978,16(9-10):945-955
Results are presented for intra- and interspecies variation in electrophoretic mobility of the enzyme glucosephosphate isomerase in the Paramecium aurelia species complex. Three new observations have been made: (1) the hitherto indistinguishable species 1 and 5 can be distinguished on the basis of GPI electrophoretic mobility, (2) the degree of intraspecies variation is much higher for GPI than for the previously studied mitochondrial dehydrogenases and esterases, and (3) several of the enzymatic variants observed in one species are apparently indistinguishable from some found in other species. The intraspecies variants found have been shown to be allelic, and, on the basis of the enzyme patterns of the heterozygotes, it is proposed that GPI is a dimeric enzyme determined by two loci. In view of the use of enzyme variation as a means of species identification in protozoa, these results suggest that the use of such methods can lead to underestimating the number of species and possibly to misclassification. The implications of these findings together with the results obtained with Tetrahymena are discussed.  相似文献   

7.
8.
Follistatin-like 1 (Fstl1) is a distantly related homolog of the Activin and Bone Morphogenetic Protein antagonist Follistatin. Interestingly, this molecule also has homology with the extracellular matrix modifying protein BM-40/SPARC/osteonectin. Previous studies in chick have identified Fstl1 as a regulator of early mesoderm patterning, somitogenesis, myogenesis and neural development. In this study, we determine the developmental expression pattern of Fstl1 in the mouse. We find that Fstl1 is ubiquitously expressed in the early embryo, and that expression becomes regionalized later during development. In the majority of tissues, Fstl1 is strongly expressed in the mesenchymal component and excluded from the epithelium. Notable exceptions include the central nervous system, in which Fstl1 expression is entirely absent with the exception of the choroid plexi and floor plate, the lung, in which Fstl1 expression can be seen in airway epithelia and the kidney, in which collecting ducts and nascent nephron epithelia express the highest levels of Fstl1.  相似文献   

9.
Genetic regulation of GM4(NeuAc) expression in mouse erythrocytes   总被引:1,自引:0,他引:1  
The polymorphic expression of GM4(NeuAc), GM3(NeuGc), GM2(NeuGc), and GM1(NeuGc) was found in erythrocytes of inbred strains of mice [Nakamura, K. et al. (1988) J. Biochem. 103, 201-208]. In this paper, we report the results of genetic analysis of the expression of GM4(NeuAc) and GM2(NeuGc). Ganglioside analysis of the progeny obtained on mating between BALB/c mice [GM4 (+)] and WHT/Ht or C57BL/6 mice [both GM4 (-)] indicated that the expression of GM4(NeuAc) is an autosomal dominant trait, and that WHT/Ht and C57BL/6 mice carry a defect on a single autosomal gene. We named this gene Gsl-4. On quantitative determination of galactosylceramide (GalCer), which is the biosynthetic precursor of GM4(NeuAc), the content of GalCer was found to be quite low in WHT/Ht erythrocytes, compared with in BALB/c erythrocytes. On analysis of GM4(NeuAc) and GalCer in 92 backcross mice produced on mating between BALB/c and WHT/Ht mice, it was found that 45 GM4(+) mice apparently expressed a detectable amount of GalCer and that 47 GM4(-) mice expressed an almost undetectable amount of GalCer. These results suggest that Gsl-4 controls the expression of GM4(NeuAc) by regulating the content of GalCer. Linkage analysis of Gsl-4 and the gene controlling GM2(NeuGc) in erythrocytes indicated that the two genes are not genetically linked. Comparison of the ganglioside expression in liver and erythrocytes of the same backcross mice suggested that the gene controlling GM2(NeuGc) expression in the liver (Ggm-2) is also responsible for the expression of GM2(NeuGc) in erythrocytes.  相似文献   

10.
11.
12.
Lippens G  Landrieu I  Smet C 《The FEBS journal》2007,274(20):5211-5222
Since its discovery 10 years ago, Pin1, a prolyl cis/trans isomerase essential for cell cycle progression, has been implicated in a large number of molecular processes related to human diseases, including cancer and Alzheimer's disease. Pin1 is made up of a WW interaction domain and a C-terminal catalytic subunit, and several high-resolution structures are available that have helped define its function. The enzymatic activity of Pin1 towards short peptides containing the pSer/Thr-Pro motif has been well documented, and we discuss the available evidence for the molecular mechanisms of its isomerase activity. We further focus on those studies that examine its cis/trans isomerase function using full-length protein substrates. The interpretation of this research has been further complicated by the observation that many of its pSer/Thr-Pro substrate motifs are located in natively unstructured regions of polypeptides, and are characterized by minor populations of the cis conformer. Finally, we review the data on the possibility of alternative modes of substrate binding and the complex role that Pin1 plays in the degradation of its substrates. After considering the available work, it seems that further analysis is required to determine whether binding or catalysis is the primary mechanism through which Pin1 affects cell cycle progression.  相似文献   

13.
Nucleolar protein 1 (Nol1) is a cell cycle dependent gene highly expressed in proliferating tissues. In order to test whether Nol1 could be used as a marker of dividing neural stem cells within mouse brain, Nol1 expression was analyzed using mouse carrying a gene trap modification of Nol1 gene. High Nol1 expression was found within the hippocampus, olfactory bulb, cerebral and cerebellar cortex. Nol1 was expressed not only in the dividing cells within the brain, but as well in the postmitotic neurons. This suggested a general role of Nol1 in assembling of ribosomes in cells with high protein production.  相似文献   

14.
15.
16.
17.
Zhu D  Shen A  Wang Y  Gu X  Gu J 《FEBS letters》2003,550(1-3):163-167
Preadipocytes are present and can proliferate to increase fat mass throughout adult life. The importance of mitochondria in these cells has never been investigated, although we recently reported that mitochondrial oxidative metabolism is non-negligible in white preadipocytes. Mitochondrial reactive oxygen species generation is intimately associated with respiratory chain function. An increasing number of reports support their role as signalling molecules. The aim of this work was to study the effects of mitochondrial reactive oxygen species on proliferation of white preadipocytes. Rotenone and oligomycin, inhibitors of complex I and of ATP synthase respectively, increased H2O2 and inhibited cell growth of preadipocytes (without inducing necrosis or apoptosis). These effects were partly prevented by addition of radical scavengers. A chemical uncoupler had opposite effects on reactive oxygen species generation and cell growth. Propofol, which inhibits complex I but also scavenges free radicals, had effects similar to those of the uncoupler on both parameters. Thus, mitochondrial reactive oxygen species can influence development of adipose tissue by affecting the size of the white preadipocyte pool.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号