首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date three β subunits of the GABAA receptor have been identified in rat brain as a result of cDNA library screening. The β2 subunit has been reported to have a wide distribution in rat brain based on in situ hybridization studies quantifying β2 mRNA. To study the β2 subunit more directly, we have raised a polyclonal antibody to a synthetic peptide representing residues 315–334 of the intracellular loop of the β2 subunit. The antibody, which had been affinity-purified, recognized the β2 peptide but did not immunolabel homologous β1 and β3 subunit peptides, indicating that this antibody is specific for the β2 subunit of the receptor. In western blots of the purified receptor, the antibody recognized a major diffuse band of 54–58 kDa arid exhibited minor labeling of lower-molecular-mass polypeptides. In western blots of cortex homogenate, the antibody exhibited nervous system-specific labeling of a 55-kDa band that comigrated with the 55-kDa band of the purified receptor. Quantitative immunolabeling of this 55-kDa polypeptide permitted direct determination of the relative amounts of the β2 subunit in different brain regions. The brainstem contained the highest relative specific activity of the β2 subunit, followed by the inferior colliculus, olfactory lobe, and cerebellum. Lower levels of immunolabeling were seen in hypothalamus, hippocampus, thalamus, and cortex.  相似文献   

2.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   

3.
Abstract: Three novel antisera to the γ2 subunit of the γ-aminobutyric acidA (GABAA) receptor/benzodiazepine receptor (GABAAR/BZDR) complex have been made. Anti-γ2S and anti-γ2L are specific antibodies to synthetic peptides that recognize the γ2S (short) and γ2L (long) forms, respectively, of the γ2 subunit. An antibody (anti-γ2IL2) to staphylococcal protein A fusion protein of the large intracellular loop (γ2IL) located between the putative transmembrane segments M3 and M4 of γ2S recognizes both γ2S and γ2L subunits. The antibodies immunoprecipitated both the solubilized and affinity-purified GABAAR/BZDR from rat and bovine brain. Immunoblots with membranes from rat brain cerebral cortex as well as with affinity-purified receptor from bovine cortex show that anti-γ2S and anti-γ2L recognize peptides of 45,000 and 47,000 Mr, respectively. Immunoprecipitation experiments indicate that γ2S is more prevalent in hippocampus, whereas γ2L is more abundant in cerebellum. Intermediate values for each form are found in the cerebral cortex. The results suggest that in the rat brain there is a considerable amount of colocalization of γ2S and γ2L in the same receptor complex. In the cerebral cortex, 15% of the BZDRs contain both γ2S and γ2L subunits and 41–48% of the γ2L subunit coexists with γ2S in the same receptor complex. In cerebellum, in 27% of the clonazepam-sensitive and 39% of the clonazepam-insensitive BZDRs the γ2S and γ2L coexist in the same receptor complex. The latter are presumably localized in granule cells and also contain α6. In addition, almost all (93%) the clonazepam-insensitive BZDRs that contain γ2L also contain a γ2S subunit in the same receptor complex. The most likely interpretation of the results is that there is an important population of granule cell receptors that contain α6, γ2S, and γ2L coexisting in the same receptor complex. Nevertheless, 31% of the cerebellar receptors that contain α6 subunit(s) have neither γ2S nor γ2L subunits. There are also species differences with respect to the relative abundance of γ2S and γ2L. These results might be relevant for understanding the molecular mechanisms underlying some of the GABAAR/BZDR-mediated effects of ethanol intoxication involving cerebellar granule cells.  相似文献   

4.
Abstract: A γ-aminobutyric acidA (GABAA) receptor (GABAAR) γ2 subunit (short form) was cloned from an adult human cerebral cortex cDNA library in bacteriophage λgt11. The 261-bp intracellular loop (IL) located between M3 and M4 was amplified using the polymerase chain reaction and inserted into the expression vectors λgt11 and pGEX-3X. Both γ-galactosidase (LacZ) and glutathione-S-transferase (GST) fusion proteins containing the γ2IL were purified, and a rabbit antibody to the LacZ–γ2IL was made. The antibody reacted with the γ2IL of both LacZ and GST fusion proteins and immunoprecipitated the GABAAR/ benzodiazepine receptor (GABAAR/BZDR) from bovine and rat brain. The antibody reacted in affinity-purified GABAAR/BZDR immunoblots with a wide peptide band of 44,000–49,000 Mr. Immunoprecipitation studies with the anti-γ2IL antibody suggest that in the cerebral cortex, 87% of the GABAARs with high affinity for benzodiazepines and 70% of the GABAARs with high affinity for muscimol contain at least a γ subunit, probably a γ2. These results indicate that there are [3H]muscimol binding GABAARs that do not bind [3H]flunitrazepam with high affinity. Immunoprecipitations with this and other anti-GABAAR/BZDR antibodies indicate that the most abundant combination of GABAAR subunits in the cerebral cortex involves α1, γ2 (or other γ), and β2 and/or β3 subunits. These subunits coexist in >60% of the GABAAR/BZDRs in the cerebral cortex. The results also show that a considerable proportion (20–25%) of the cerebellar GABAAR/BZDRs is clonazepam insensitive. At least 74% of these cerebellar receptors, which likely contain α6, also contain γ2 (or other γ) subunit(s). The α1 and β2 or β3 subunits are also frequently associated with γ2 (or other γ) and α6 in these cerebellar receptors.  相似文献   

5.
The role of the GABA(A) receptor beta3 subunit in determining acute cocaine sensitivity and behavioral sensitization to repeated cocaine was measured in mice missing both (-/-), one (+/-), or neither (+/+) allele of the beta3 gene. Locomotor stimulation induced by one cocaine injection (20 mg/kg, i.p.) was found to be greater in -/- mice compared with +/+ mice, whereas cocaine-induced behaviors were intermediate in +/- mice. Amphetamine did not cause greater locomotor responses in -/- mice, suggesting that the increased sensitivity of -/- mice to cocaine does not generalize to other psychomotor stimulants. GABA-stimulated chloride uptake was 51% lower in striatum of -/- mice compared with +/+ mice, but only 27% lower in cortex. After 14 daily cocaine injections, the behavioral response to cocaine was increased in +/+ and +/- mice, but was not increased further in -/- mice. Additionally, repeated cocaine exposure decreased striatal GABA(A) receptor function in +/+ and +/- mice. In -/- mice, GABA(A) receptor function was not decreased any further by repeated cocaine injections. Thus, alterations in the beta3 subunit may be responsible for determining the behavioral responses induced by acute and repeated cocaine treatment, as well as mediating the neurochemical adaptation that occurs during sensitization to repeated cocaine.  相似文献   

6.
Abstract: The pharmacological properties of γ-aminobutyric acidA (GABAA) receptors are altered by prolonged exposure to ethanol both in vivo and in vitro. We have shown previously that prolonged ethanol exposure elicits selective alterations in various GABAA receptor subunit mRNA levels in rat cerebral cortex. Some of these effects are rapidly reversed during ethanol withdrawal. The present study was conducted to determine the effects of prolonged ethanol exposure (dependence) and ethanol withdrawal on cerebral cortical peptide expression for several subunits. GABAA receptor α1 subunit peptide levels were decreased by nearly 40%, whereas α4 subunit peptide levels were increased by 27% in both ethanol-dependent and withdrawn rats. These changes correlate well with observed alterations in mRNA levels following prolonged ethanol exposure in dependent rats, but do not match the effects on mRNA levels during ethanol withdrawal. β2/3 subunit peptide levels increased by ~32% in both ethanol-dependent rats and rats undergoing ethanol withdrawal. We observed a 30–60% increase in γ1 subunit peptide levels in both dependent rats and those undergoing withdrawal, also correlating with the previous report on ethanol-induced alterations in mRNA levels. Peptide levels for γ2 subunits did not differ from control values in either condition. These findings show that specific alterations in GABAA receptor subunit peptide levels are associated with ethanol dependence in rats. GABAA receptor subunit peptide expression is more stable than mRNA expression, and mRNA levels are not representative of peptide expression during ethanol withdrawal. These findings are consistent with the suggestion that alterations in GABAA receptor gene expression underlie the functional properties of GABAA receptors in ethanol-dependent rats and those undergoing ethanol withdrawal.  相似文献   

7.
The effects of cyclic AMP-dependent protein kinase (cAMP-PK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation on the binding of bovine tau to tubulin and calpain-mediated degradation of tau were studied. Both cAMP-PK and CaMKII readily phosphorylated tau and slowed the migration of tau on sodium dodecyl sulfate-containing polyacrylamide gels. However, cAMP-PK phosphorylated tau to a significantly greater extent than CaMKII (1.5 and 0.9 mol of 32P/mol of tau, respectively), and phosphorylation of tau by cAMP-PK resulted in a greater shift to a more acidic, less heterogeneous pattern on two-dimensional nonequilibrium pH gradient gels compared with CaMKII phosphorylation. Two-dimensional phosphopeptide maps indicate that cAMP-PK phosphorylates a site or sites on tau that are phosphorylated by CaMKII, as well as a unique site or sites that are not phosphorylated by CaMKII. Phosphorylation of tau by cAMP-PK significantly decreased tubulin binding and, as previously reported, also inhibited the calpain-induced degradation of tau. CaMKII phosphorylation of tau did not alter either of these parameters. These results suggest that the phosphorylation of site(s) on the tau molecule uniquely accessible to cAMP-PK contributed to the decreased tau-tubulin binding and increased resistance to calpain hydrolysis.  相似文献   

8.
9.
10.
A cDNA encoding a protein with 70% amino acid identity to the previously characterized gamma-aminobutyric acidA (GABAA) receptor alpha-subunits was isolated from a rat brain cDNA library by homology screening. As observed for alpha 1-, alpha 2-, and alpha 3-subunits, coexpression of this new alpha-subunit (alpha 5) with a beta- and gamma 2-subunit in cultured cells produces receptors displaying high-affinity binding sites for both muscimol, a GABA agonist, and benzodiazepines. Characteristic of GABAA/benzodiazepine type II sites, receptors containing alpha 2-, alpha 3- or alpha 5-subunits have low affinities for several type I-selective compounds. However, alpha 5-subunit-containing receptors have lower affinities for zolpidem (30-fold) and Cl 218 872 (three-fold) than measured previously using recombinantly expressed type II receptors containing either alpha 2- or alpha 3-subunits. Based on these findings, a reclassification of the GABAA/benzodiazepine receptors is warranted.  相似文献   

11.
Delta (δ) subunit containing GABAA receptors are expressed extra‐synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with α6 subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABAA receptor pentamers by subunit concatenation. These receptors (composed of α6, β3 and δ subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one and to 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. α6‐β3‐α6/δ receptors showed a substantial response to GABA alone. Three receptors, β3‐α6‐δ/α6‐β3, α6‐β3‐α63‐δ and β3‐δ‐β36‐β3, were only uncovered in the combined presence of the neurosteroid 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one with GABA. All four receptors were activated by 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the δ subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the δ subunit can assume multiple positions in a receptor pentamer composed of α6, β3 and δ subunits.  相似文献   

12.
gamma-Aminobutyric acidA (GABAA) receptors are multisubunit ligand-gated ion channels which mediate neuronal inhibition by GABA and are composed of at least four subunit types (alpha, beta, gamma, and delta). The gamma 2-subunit appears to be essential for benzodiazepine modulation of GABAA receptor function. In cloning murine gamma 2-subunits, we isolated cDNAs encoding forms of the subunit that differ by the insertion of eight amino acids. LLRMFSFK, in the major intracellular loop between proposed transmembrane domains M3 and M4. The two forms of the gamma 2-subunit are generated by alternative splicing, as demonstrated by cloning and partial sequencing of the corresponding gene. The eight-amino-acid insertion encodes a potential consensus serine phosphorylation site for protein kinase C. These results suggest a novel mechanism for the regulation of the GABAA receptor by protein phosphorylation.  相似文献   

13.
A cDNA from a rat hippocampal cDNA library encodes an isoform of the alpha polypeptide of the gamma-aminobutyric acid (GABA)/benzodiazepine (BZ) receptor. Its deduced amino acid sequence is 96% identical to that of the alpha 2 polypeptide of the bovine GABAA receptor. The polypeptide has features shared by all previously reported GABAA receptor alpha polypeptides and shares 71-76% identity with previously described rat alpha polypeptides. Most of the differences lie in the presumed extracellular and intracellular domains. On Northern blots, the alpha 2 cDNA detects two mRNAs, which are found in cortex, hippocampus, and striatum, brain regions enriched in pharmacologically defined "BZ type II" receptors. Other workers have previously shown that the alpha polypeptides of the GABAA receptor largely determine the BZ binding properties of reconstituted receptors. The distribution of alpha 2 mRNAs in rat brain suggests that the alpha 2 subunit may indeed be involved in the BZ type II receptors.  相似文献   

14.
Abstract: The GABAA receptor is a heterooligomeric protein complex composed of multiple receptor subunits. Developmental changes in the pattern of expression of 11 GABAA receptor subunits in individual rat embryonic hippocampal neurons on days 1–21 in culture and acutely dissociated hippocampal neurons from postnatal day (PND) 5 rat pups were investigated using the technique of single-cell mRNA amplification. We demonstrate that multiple GABAA receptor subunits are expressed within individual hippocampal neurons, with most cells simultaneously expressing α1, α2, α5, β1, and γ2 mRNAs. Further, relative expression of several GABAA receptor subunit mRNAs changes significantly in embryonic hippocampal neurons during in vitro development, with the relative abundance (compared with β-actin) of α1, α5, and γ2 mRNAs increasing 2.3-, 2.7-, and 3.8-fold, respectively, from days 1 to 14, and β1 increasing 5-fold from days 1 to 21. In situ hybridization with antisense digoxigenin-labeled α1, β1, and γ2 RNA probes demonstrates a similar increase in expression of subunit mRNAs as embryonic hippocampal neurons mature in vitro. Relative abundances of α1, β1, and γ2 subunit mRNAs in acutely dissociated PND 5 hippocampal neurons are also significantly greater than in embryonic day 17 neurons on day 1 in vitro and exceed the peak values seen in cultured neurons on days 14–21, suggesting that GABAA receptor subunit mRNA expression within individual hippocampal neurons follows a similar, if somewhat delayed, developmental pattern in vitro compared with in vivo. These findings suggest that embryonic hippocampal neuronal culture provides a useful model in which to study the developmental regulation of GABAA receptor expression and that developmental changes in GABAA receptor subunit expression may underlie some of the differences in functional properties of GABAA receptors in neonatal and mature hippocampal neurons.  相似文献   

15.
Abstract: The localization of two forms of the γ subunit of G proteins, γ3 and γ12, was examined in the mammalian brain. Concentrations of these two γ subunits increased markedly, as did those of glial fibrillary acidic protein, during postnatal development in the rat cerebral cortex. In aged human brains, by contrast, the concentration of γ3 tended to decrease with age, whereas that of γ12 in the temporal cortex increased slightly. An immunohistochemical study of human brains revealed that γ3 was abundant in the neuropil, whereas γ12 was localized in glial cells. In the hippocampal formation of aged human brains, levels of γ12-positive cells, as well as levels of glial fibrillary acidic protein- and vimentin-positive astrocytes, increased, in particular in the CA1 subfield and the prosubiculum, in which there was a decrease in the number of pyramidal cells. The appearance of γ12-positive cells associated with the loss of pyramidal cells was also observed in the hippocampus of rats that had been treated with kainic acid. These results indicate that γ12 is strongly expressed in reactive astrocytes. In a study of cultured neural cells, we found that γ12 was predominant in glioma cells, such as C6 and GA-1 cells, in contrast with the specific localization of γ3 in PC12 pheochromocytoma cells, which are neuron-like cells. Taken together, the results indicate that γ3 and γ12 are selectively expressed in neuronal and glial cells, respectively, and that concentrations of γ3 and γ12 in the brain are related to the numbers and/or extent of maturation of these cells.  相似文献   

16.
17.
Abstract: The large intracellular loop (IL) of the γ2 subunit of the cloned human γ-aminobutyric acidA (GABAA) receptor (γ2IL) was expressed in bacteria as glutathione- S -transferase and staphylococcal protein A fusion proteins. Mice were immunized with the fusion proteins (one protein per animal), and monoclonal antibodies were obtained. Six monoclonal antibodies reacted with the γ2IL moiety of the fusion proteins. Three of these monoclonal antibodies also immunoprecipitated a high proportion of the GABAA/benzodiazepine receptors from bovine and rat brain and reacted with a wide 44,000–49,000-Mr peptide band in immunoblots of affinity-purified GABAA receptors. These monoclonal antibodies are valuable reagents for the molecular characterization of the GABAA receptors in various brain regions.  相似文献   

18.
Abstract: Two GABAA receptor subunit-specific antibodies anti-α6 and anti-α1 have been used for elucidating the relationship between the presence of α1 and/or α6 subunits in the cerebellar GABAA receptors and the benzodiazepine-binding specificity. Receptor immunoprecipitation with the subunit-specific antibodies shows that 39% of the cerebellar GABAA receptors have α6, whereas 76% of the receptors have α1 as determined by [3H]muscimol binding. Results show that 42–45% of the receptors having α6 also have α1, whereas 13–15% of the receptors that contain α1 also have α6. The immunoprecipitation results as well as immunopurification and immunoblotting experiments reveal the existence of three types of cerebellar GABAA receptors; i.e., one has both α1 and α6 subunits, a second type has α1 but not α6, and a third type has α6 but not α1 subunits. The results also show that receptors where α1 and α6 subunits coexist have two pharmacologically different benzodiazepine-binding properties, each associated with a different α subunit. The α1 subunit contributes the high-affinity binding of [3H]Ro 15-1788 (flumazenil) and the diazepam-sensitive binding of [3H]Ro 15-4513. The α6 subunit contributes the diazepam-insensitive binding of [3H]Ro 15-4513, but it does not bind [3H]Ro 15-1788 with high affinity. Thus, in the cerebellar α1–α6 GABAA receptors, there is no dominance of the pharmacology of one α subunit over the other.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号