首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
The effect of inoculum preparation and density on the efficiency of remediation of 2,4-dichlorophenoxyacetic acid (2,4-D) by bioaugmentation was studied in non-sterile soil. A 2,4-D-degrading Pseudomonas cepacia strain (designated BRI6001) was used initially in liquid culture to determine the effects of pre-growth induction and of inoculum density. The time for complete 2,4-D degradation was reduced by 0.5 day for each log increase of inoculum density. In mixed (BRI6001 and soil bacteria) liquid cultures, a competition effect for 2,4-D became apparent at low inoculum levels (less than 10 105 cfu/ml BRI6001 for 108 cfu/ml soil bacteria) but only when the soil bacteria included indigenous 2,4-D degraders. In static non-sterile soil, the effect of inoculum density on 2,4-D degradation was comparable to that in liquid culture but only at high inoculation levels. At lower levels, a biological effect for 2,4-D degradation became apparent, as was observed in mixed liquid cultures, whereas at intermediate levels, a combination of biological, physical and chemical factors decreased the efficiency of bioaugmentation. The acclimation period for 2,4-D degradation in soil bioaugmented with BRI6001 reflected mainly the time required for cell induction and, presumably, for overcoming the physical limitation of diffusion of both 2,4-D and added bacteria in the soil matrix. Correspondence to: R. SamsonISSUED AS NRCC 33848  相似文献   

2.
The influence of moisture on the survival, movement anddegradation activity of a 2,4-D degrading bacterium,Burkholderia cepacia strain BRI6001L, geneticallyengineered to contain bioluminescent and lactoseutilization genes, was studied in unsaturated soil columns.The distance traveled by BRI6001L was dependent on theclay content of the soil, higher clay contents beingresponsible for higher filtration coefficients. Long termsurvival, in excess of one year, was attributed to strainBRI6001L's ability to survive dry conditions. Changes inthe 2,4-D biodegradation rate showed a better correlationwith the BRI6001L population density than with the totalviable bacterial population. At moisture levels betweenfield capacity and 40% moisture (– 33 kPa to –100 kPa)2,4-D degradation was attributed mainly to BRI6001L. Atmoisture levels between 6 and 15%, 2,4-D disappearancewas attributed to the indigenous microbial population,with no degradation occurring at moisture levels below6%. Returning the moisture to above 40% led to anincrease of 4 orders of magnitude in the BRI6001Lpopulation density and to a 10-fold increase in the 2,4-Ddegradation rate. The ability to monitor a specificmicrobial population using reporter genes hasdemonstrated the importance of controlling moisturelevels for maximizing biodegradation rates in unsaturatedsoil environments.  相似文献   

3.
Two strains of Alcaligenes denitrificans, designated BRI 3010 and BRI 6011, were isolated from polychlorinated biphenyl (PCB)-contaminated soil using 2,5-dichlorobenzoic acid (2,5-DCBA) and 2,4-DCBA, respectively, as sole carbon and energy sources. Both strains degraded 2-chlorobenzoic acid (2-CBA), 2,3-DCBA, and 2,5-DCBA, and were unable to degrade 2,6-DCBA. BRI 6011 alone degraded 2,4-DCBA. Growth of BRI 6011 in yeast extract and 2,6-DCBA induced pyrocatechase activity, but 2,6-DCBA was not degraded, suggesting the importance of an unsubstituted carbon six of the aromatic ring. Metabolism of the chlorinated substrates resulted in the stoichiometric release of chloride, and degradation proceeded by intradiol cleavage of the aromatic ring. Growth of both strains on 2,5-DCBA induced pyrocatechase activities with catechol and chlorocatechols as substrates. In contrast to dichlorobenzoic acids, growth on 2-CBA, benzoic acid, mono- and dihydroxybenzoic acids induced a pyrocatechase activity against catechol only. Although 2,4-DCBA was a more potent inducer of both pyrocatechase activities, its utilization by BRI 6011 was inhibited by 2,5-DCBA. Specific uptake rates using resting cells were highest with 2-CBA, except when the resting cells had been previously grown on 2,5-DCBA, in which case 2,5-DCBA was the preferred substrate. The higher rates of 2,5-DCBA uptake obtained by growth on that substrate, suggested the existence of a separately induced uptake system for 2,5-DCBA.  相似文献   

4.
P. Perata  F. LoSchiavo  A. Alpi 《Planta》1988,173(3):322-329
The process of carrot (Daucus carota L.) somatic embryogenesis is highly sensitive to exogenously added ethanol, since 5 mM ethanol inhibits this process by 50%, whereas the growth of proliferating carrot cells is inhibited to the same extent by 20 mM ethanol. This is consistent with the fact that proliferating cultures produce ethanol and release it into the medium at concentrations up to 20 mM, whereas embryogenic culture medium contains less than 1 mM ethanol. Data are presented showing the influence of cell density and 2,4-dichlorophenoxyacetic acid on ethanol production and on the presence of an alcohol-dehydrogenase (EC 1.1.1.1.) inactivator in carrot embryos.Abbreviations ADH alcohol dehydrogenase - 6-BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - DTT dithiothreitol - FW fresh weight  相似文献   

5.
Nine mycorrhizal fungi and free-living saprophytic microorganisms were tested for their ability to degrade two chlorinated aromatic herbicides at two herbicide concentrations and three nitrogen concentrations. Radiolabelled 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) were used as substrates at concentrations of 1 and 4 mM. After 8 weeks, none of the cultures tested grew at 4 mM 2,4-D. However, when the 2,4-D concentration was reduced to 1 mM, Phanerochaete chrysosporium 1767 had the highest level of 2,4-D mineralization and degradation under all nitrogen conditions. All cultures tested grew at both atrazine concentrations. In all cases, the ericoid mycorrhizal fungus Hymenoscyphus ericae 1318 had the highest level of atrazine carbon incorporated into its tissue. In general, as the nitrogen concentration increased, the total herbicide degradation increased. All of the cultures, except for Rhizopogon vinicolor 7534 and Sclerogaster pacificus 9011, showed increased degradation at 4 mM compared with 1 mM atrazine. The ability to degrade these two herbicides thus appeared to be dependent on the fungus and the herbicide, with no correlation to fungal ecotype (mycorrhizal versus free living).  相似文献   

6.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

7.
Anthocyanin formation in a suspension culture of Daucus carota is induced by transfer from medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) to one lacking 2,4-D. The specific yields were strongly influenced by the inoculum density. Inoculum density altered the effect of zeatin concentration on anthocyanin accumulation. The in part by increasing the sucrose levels. It was inferred from the results that sucrose was exhausted at a low concentration of sucrose and at a high cell density, resulting in the decrease of yield of anthocyanin.  相似文献   

8.
Summary A 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial strain, Xanthobacter sp. CP, was isolated after enrichment in aerated soil columns. A limited number of chlorinated phenols and chlorinated phenoxyalkanoic acids with an even number of carbon atoms in the side chain served as substrates for growth, although whole cells exhibited oxygen uptake with a wide range of those compounds. The maximal growth rate with 2,4-D was 0.13·h-1 at a growth yield of 0.1 g biomass/g 2,4-D. Chloride ions were released quantitatively from 2,4-D and related chlorinated aromatic compounds which served as growth substrates. No by-products of 2,4-D metabolism were detected in oxygen-sufficient cultures of Xanthobacter sp. CP and catechols were cleaved exclusively by catechol 1,2-dioxygenase.  相似文献   

9.
The chemical 2,4-dichlorophenoxyacetic acid (2,4-D) regulates plant growth and development and mimics auxins in exhibiting a biphasic mode of action. Although gene regulation in response to the natural auxin indole acetic acid (IAA) has been examined, the molecular mode of action of 2,4-D is poorly understood. Data from biochemical studies, (Grossmann (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508) proposed that at high concentrations, auxins and auxinic herbicides induced the plant hormones ethylene and abscisic acid (ABA), leading to inhibited plant growth and senescence. Further, in a recent gene expression study (Raghavan et al. (2005) Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 5:4–17), we have confirmed that at high concentrations, 2,4-D induced the expression of the gene NCED1, which encodes 9-cis-epoxycarotenoid dioxygenase, a key regulatory enzyme of ABA biosynthesis. To understand the concentration-dependent mode of action of 2,4-D, we further examined the regulation of whole genome of Arabidopsis in response to a range of 2,4-D concentrations from 0.001 to 1.0 mM, using the ATH1-121501 Arabidopsis whole genome microarray developed by Affymetrix. Results of this study indicated that 2,4-D induced the expression of auxin-response genes (IAA1, IAA13, IAA19) at both auxinic and herbicidal levels of application, whereas the TIR1 and ASK1 genes, which are associated with ubiquitin-mediated auxin signalling, were down-regulated in response to low concentrations of 2,4-D application. It was also observed that in response to low concentrations of 2,4-D, ethylene biosynthesis was induced, as suggested by the up-regulation of genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Although genes involved in ethylene biosynthesis were not regulated in response to 0.1 and 1.0 mM 2,4-D, ethylene signalling was induced as indicated by the down-regulation of CTR1 and ERS, both of which play a key role in the ethylene signalling pathway. In response to 1.0 mM 2,4-D, both ABA biosynthesis and signalling were induced, in contrast to the response to lower concentrations of 2,4-D where ABA biosynthesis was suppressed. We present a comprehensive model indicating a molecular mode of action for 2,4-D in Arabidopsis and the effects of this growth regulator on the auxin, ethylene and abscisic acid pathways. Experiment station: Plant Biotechnology Centre, Primary Industries Research Victoria, Department of Primary Industries, La Trobe University, Bundoora, Victoria 3086, and the Victorian Microarray Technology Consortium (VMTC).  相似文献   

10.
This study investigated the influence of osmotic stress, induced by sorbitol and sucrose combinations, on growth and proline accumulation in callus cultures of rice (Oryza sativa L.). Dehusked mature seeds, cv. Hassawi, were induced to callus on MS medium supplemented with 4.52 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.32 µM 6-furfurylaminopurine (kinetin). The medium also contained 29.2, 58.4, 87.6, and 116.8 mM sucrose combined with 0, 54.9, 109.8, and 164.7 mM sorbitol. Callus formation was observed in about 35 % of the cultured seeds irrespective of the sugar treatment. An increase in callus mass was observed as sucrose concentration increased reaching a maximum growth at 87.6 mM. Callus growth was enhanced in response to 54.9 mM sorbitol but at higher concentration it was inhibitory. Best callus growth was obtained on a medium containing 54.9 mM sorbitol combined with 87.6 mM sucrose. Increasing osmotic stress, as a consequence of increasing sucrose and sorbitol concentrations, induced proline accumulation and the highest concentration of proline, 5.8 µmol g–1(f.m.), was obtained on 164.7 mM sorbitol combined with 116.8 mM sucrose.  相似文献   

11.
A bacterial consortium capable of simultaneously degrading the fungicide, carbendazim, and the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) was obtained by enrichment of soil samples collected from paddy fields in Japan. This consortium was acclimated in a continuously fed culture with 20 M carbendazim and 2 mM 2,4-D as sole carbon sources using a glass column reactor. By denaturing gradient gel electrophoresis, we observed changes in the bacterial population following the degradation of the both pesticides. This acclimated consortium completely degraded up to 100 M carbendazim and 3 mM 2,4-D within 36 and 24 h, respectively, in batch culture, but a lag time was observed after precultivation in a rich medium. The immobilization of the consortium on a polyester support enhanced the degradation ability of this consortium compared with the use of free cells. This microbial consortium could be useful for bioremediation at sites contaminated with these pesticides.  相似文献   

12.
Biodegradation of two chlorinated aromatic compounds was found to be a common capability of the microorganisms found in the soils of undisturbed, pristine ecosystems. We used 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3CBA) as enrichment substrates to compare populations of degrading bacteria from six different regions making up two ecosystems. We collected soil samples from four Mediterranean (California, central Chile, the Cape region of South Africa, and southwestern Australia) and two boreal (northern Saskatchewan and northwestern Russia) ecosystems that had no direct exposure to pesticides or to human disturbance. Between 96 and 120 samples from each of the six regions were incubated with 50 ppm of [U-14C]2,4-D or [U-14C]3CBA. Soils from all regions samples mineralized both 2,4-D and 3CBA, but 3CBA was mineralized without a lag period, while 2,4-D was generally not mineralized until the second week. 3CBA degradative capabilities were more evenly distributed spatially than those for 2,4-D. The degradative capabilities of the soils were readily transferred to fresh liquid medium. 3CBA degraders were easily isolated from most soils. We recovered 610 strains that could release carbon dioxide from ring-labeled 3CBA. Of these, 144 strains released chloride and degraded over 80% of 1 mM 3CBA in 3 weeks or less. In contrast, only five 2,4-D degraders could be isolated, although a variety of methods were used in an attempt to culture the degraders. The differences in the distribution and culturability of the bacteria responsible for 3CBA and 2,4-D degradation in these ecosystems suggest that the two substrates are degraded by different populations. We also describe a 14C-based microtiter plate method that allows efficient screening of a large number of samples for biodegradation activity.  相似文献   

13.
Phenoxyalkanoic acids are a widely used class of herbicides. This work employed high-resolution 13C NMR to study the structural changes induced by humic substances and horseradish perodixase on 2,4-dichorophenoxyacetic acid (2,4-D) 13C-labelled in the side chain. NMR spectra showed that humic substances chemically catalyze abiotic splitting of [13C]2,4-D into 2,4-dichlorophenol and [13C]acetic acid at pH 7 but not at pH 4.7. Peroxidase did not catalyze the oxidative degradation of [13C]2,4-D at any pH tested and inhibited the effect of humic substances. Catalytic degradation by humic substances was attributed to free-radical reactions enhanced by the stereochemical contribution of large conformational structures formed by heterogeneous humic molecules at neutral pHs. Inhibition of 2,4-D degradation when humic substances were combined with peroxidase was explained by modification of both chemical and conformational humic structure due to peroxidase-promoted oxidative cross-coupling among humic molecules. Our findings show for the first time that the abiotic degradation of 2,4-D is catalyzed by dissolved humic substances at neutral pH. Journal of Industrial Microbiology & Biotechnology (2001) 26, 70–76. Received 09 February 2000/ Accepted in revised form 22 May 2000  相似文献   

14.
Our objective was to isolate and characterize indigenous bacteria able to use 2,4-D as a sole carbon (C) and energy source from an agricultural soil in the Sauce Grande River basin (Argentina). Culturable-dependant and molecular methods combined were used to identify and characterize putatively dominant indigenous degrading bacteria. Physiological traits, chloride release and biomass production showed the degradative capacity of the isolates obtained and high-performance liquid chromatography (HPLC) was used to corroborate the evidence. Degrading genes (tfdA and tfdB) were detected in all isolates, and their restriction fragment length polymorphisms (RFLP) were analyzed. Altogether, our results suggest that agricultural use of 2,4-D at recommended level leads to selection for a copiotrophic degrading population. The dominant genus able to metabolize 2,4-D in this soil was identified as Cupriavidus by 16S rRNA gene sequencing and the RFLP profiles of all isolates resembled that of Cupriavidus necator JMP134, the model organism for 2,4-D degradation. The strain EMA-G showed a remarkable performance in herbicide degradation (100 % removal in <1 day) in pure culture and is a favorite candidate for future biodegradation experiments.  相似文献   

15.
Ochrobactrum sp. B2, a methyl parathion-degrading bacterium, was proved to be capable of using p-nitrophenol (PNP) as carbon and energy source. The effect of factors, such as temperature, pH value, and nutrition, on the growth of Ochrobactrum sp. B2 and its ability to degrade p-nitrophenol (PNP) at a higher concentration (100 mg l−1) was investigated in this study.The greatest growth of B2 was observed at a temperature of 30 °C and alkaline pH (pH 9–10). pH condition was proved to be a crucial factor affecting PNP degradation. Enhanced growth of B2 or PNP degradation was consistent with the increase of pH in the minimal medium, and acidic pH (6.0) did not support PNP degradation. Addition of glucose (0.05%, 0.1%) decreased the rate of PNP degradation even if increased cell growth occurred. Addition of supplemental inorganic nitrogen (ammonium chloride or ammonium sulphate) inhibited PNP degradation, whereas organic nitrogen (peptone, yeast extract, urea) accelerated degradation.  相似文献   

16.
This study concerns the effects of four different classes of plant growth regulators on root morphology, patterns of growth and condensed tannin accumulation in transgenic root cultures of Lotus corniculatus L. (Bird's-foot trefoil). Growth of transformed roots in 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in decreased tannin levels relative to controls at concentrations of 10-6 M and above, while gibberellic acid (GA3) inhibited tannin accumulation at concentrations of 10-7 M and above. Benzyladenine (BA) had little effect at low concentrations (10-7 M and below) but resulted in an increase in tannin levels at 10-6 M. Abscisic acid had little effect on levels of condensed tannins at any of the concentrations used. Experiments involving growth regulator addition and medium transfer demonstrated that 2,4-D inhibition of tannin accumulation could be reversed by GA3 and BA, while GA3 downregulation could only be reversed by the addition of 2,4-D. Although 2,4-D inhibited tannin accumulation, addition of 2,4-D to root cultures grown for 14 or 28 days in the absence of plant growth regulators stimulated both growth and tannin biosynthesis. Characteristic alterations in root morphologies accompanied growth regulator-mediated modulation of tannin biosynthesis. Growth in 2,4-D resulted in partially de-differentiated root cultures while growth in GA3 produced roots with an elongated phenotype. Restoration of tannin biosynthesis in 2,4-D-treated roots was accompanied by root re-differentiation and the production of new lateral roots.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid 3 - FW fresh weight  相似文献   

17.
Summary 2,4-Dichlorophenoxyacetic acid (2,4-D) resistant plants of transgenic cotton (Gossypium hirsutum L.) were produced using Agrobacterium tumefaciens containing a plasmid carrying the neomycin phosphotransferase II (npt II) and 2,4-D monooxygenase (tfd A) genes. An in vitro assay was performed to determine the sensitivity of seed germination, and the growth of seedlings of transgenic and non-transgenic cotton to various concentrations of kanamycin and 2,4-D. The results indicated that kanamycin caused the cotyledons of non-transgenic plants to turn white, but transgenic plants grew normally. Seed germination and seedling growth of non-transgenic plants were strongly inhibited by 2,4-D, but only slightly for transgenic plants. Transgenic plants and non-transgenic plants can be clearly distinguished by the use of 2 mg l−1 2,4-D in seed germination medium. There was a high correlation between the response of seed germination and the growth of seedlings to kanamycin or 2,4-D, based on the germination ration, albino ratio, dry weight or fresh weight. On this basis, we development a rapid method for identifying transgenic plants that has been verified in the field. These findings will allow identification of cotton transformants at an early stage of plant development, saving time and improving cultivars containing the 2,4-D resistance trait.  相似文献   

18.
The auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was shown to modulate the activities of several phosphatases with membranes isolated from soybean hypocotyls under conditions where degradative changes in the membranes were minimized. The medium for isolation of membranes consisted of 0.1 M Tris/HCl or Tris/acetate, pH 6.5, 0.5 M sucrose, 4% choline (ww) and 4% ethanolamine (vv) to inhibit phospholipase D, 20 mM EGTA [ethyleneglycol-bis- (β aminoethyl ether) N,N-tetracetic acid] and 1 mM nupercaine, to inhibit phospholipase A. In contrast, the inactive auxin analog 2,3-D, did not influence ATPase activity. Endogenous release of inorganic phosphate from an unidentified source was also stimulated 30% by 2,4-D. Phosphatidate phosphatase was inhibited by 2,4-D, whereas hydrolysis of glucose-6-phosphate was not influenced by 2,4-D under the same conditions. These observations may be of relevance to the proton pump hypothesis of growth regulation.  相似文献   

19.
Smith AR  Beadle CA 《Biodegradation》2008,19(5):669-681
Burkholderia cepacia 2a inducibly degraded 2,4-dichlorophenoxyacetate (2,4-D) sequentially via 2,4-dichlorophenol, 3,5-dichlorocatechol, 2,4-dichloromuconate, 2-chloromuconolactone and 2-chloromaleylacetate. Cells grown on nutrient agar or broth grew on 2,4-D-salts only if first passaged on 4-hydroxybenzoate- or succinate-salts agar. Buffered suspensions of 4-hydroxybenzoate-grown cells did not adapt to 2,4-D or 3,5-dichlorocatechol, but responded to 2,4-dichlorophenol at concentrations <0.4 mM. Uptake of 2,4-dichlorophenol by non-induced cells displayed a type S (cooperative uptake) uptake isotherm in which the accelerated uptake of the phenol began before the equivalent of a surface monolayer had been adsorbed, and growth inhibition corresponded with the acquisition of 2.2-fold excess of phenol required for the establishment of the monolayer. No evidence of saturation was seen even at 2 mM 2,4-dichlorophenol, possibly due to absorption by intracellular poly-beta-hydroxybutyrate inclusions. With increasing concentration, 2,4-dichlorophenol caused progressive cell membrane damage and, sequentially, leakage of intracellular K(+), P(i), ribose and material absorbing light at 260 nm (presumed nucleotide cofactors), until at 0.4 mM, protein synthesis and enzyme induction were forestalled. Growth of non-adapted cells was inhibited by 0.35 mM 2,4-dichlorophenol and 0.25 mM 3,5-dichlorocatechol; the corresponding minimum bacteriocidal concentrations were 0.45 and 0.35 mM. Strain 2a grew in chemostat culture on carbon-limited media containing 2,4-D, with an apparent growth yield coefficient of 0.23, and on 2,4-dichlorophenol. Growth on 3,5-dichlorocatechol did not occur without a supplement of succinate, probably due to accumulation of toxic quantities of quinonoid and polymerisation products. Cells grown on these compounds were active towards all three, but not when grown on other substrates. The enzymes of the pathway therefore appeared to be induced by 3,5-dichlorocatechol or some later metabolite. A possible reason is offered for the environmental persistence of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T).  相似文献   

20.
Accumulation of anthraquinones in Morinda citrifolia cell suspensions   总被引:1,自引:0,他引:1  
Cell suspensions of Morinda citrifolia were cultivated in a B5-medium containing 4% sucrose as the sole carbon source and 1 mg l-1 naphthyl acetic acid (NAA) or 1 mg l-1 2,4-dichloro-phenoxyacetic acid (2,4-D). Both auxins were able to support growth but only in the presence of NAA anthraquinone production was observed. 2,4-D inhibited the production in NAA cultures. Anthraquinone synthesis took place in the growth and the stationary phase and amounts of 0.2–0.4 mmol (about 100–200 mg) g-1 dry weight could be reached.Under both growth conditions sucrose was hydrolyzed extracellularly by invertase. From the resulting monosaccharides, glucose was taken up preferentially and an appreciable uptake of fructose only took place when medium glucose was exhausted. Sugar uptake rates were similar when cells were grown in NAA and in 2,4-D medium but the intracellular sugar contents (expressed on a dry weight basis) differed considerably. The presence of sucrose, glucose and fructose was demonstrated under both growth conditions. The amounts of sucrose and glucose were much lower in the 2,4-D cells than in the NAA-cells especially during the growth phase. Fructose contents were low and comparable, while in NAA cells an unknown sugar (possibly the sugar moiety of the glycosylated anthraquinones) was observed especially at the end of the growth phase and in the stationary phase. The differences in sugar concentrations were even larger due to the lower water contents of the NAA cells.Respiration of 2,4-D cells was much higher than that of NAA cells during the growth phase. A sharp increase in sugar contents (mainly sucrose) occurred in the 2,4-D cells at the end of the growth phase and corresponded with the fall in respiratory activity.A possible correlation between the lack of production of anthraquinones in 2,4-D cells and a less efficient growth metabolism in these cells is discussed.Abbreviations AQ anthraquinones - 2,4-D 2,4-dichloro-phenoxy-acetic acid - DW dry weight - FW fresh weight - NAA naphthyl acetic acid - pCPO p-chloro-phenoxy-acetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号