首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD+ glycohydrolase activity located in the nuclear envelope was maximally solubilized by treatment with 0.1--0.2% Triton X-100. The residual activity largely represents the chromatin-associated NAD+ glycohydrolase. Under these conditions the phospholipids were extensively solubilized (over 90%) while leaving the nuclei physically stable, although the nuclear membranes were removed, as shown by electron microscopy. After Triton X-100 treatment, deoxyribonuclease I did not significantly affect the residual NAD+ glycohydrolase activity, although the DNA was completely broken down. This enzyme activity can be released from the nuclear pellet by incubation with phospholipase C. For comparative studies, the glucose 6-phosphatase activity, known to be present in the nuclear envelope, was investigated. Treatment with 0.01% Triton X-100 released 10--20% of the phospholipids, but without solubilizing either glucose 6-phosphatase or NAD+ glycohydrolase. Higher Triton X-100 concentrations (0.1--1.0%) inhibited glucose 6-phosphatase, but not NAD+ glycohydrolase activity. NAD+ glycohydrolase is apparently present in a latent form in the nuclear envelope. Glucose 6-phosphatase, However, shows no such latency.  相似文献   

2.
The subcellular distribution of NAD glycohydrolase was studied by fractionation of calf spleen homogenates using differential and discontinuous density gradient centrifugations. The highest amount of NAD glycohydrolase activity was associated with microsomes, which in this tissue were found to contain, in addition to endoplasmic reticulum, a large proportion of vesicles derived from plasma membranes. The distribution pattern of NAD glycohydrolase was found to parallel that of plasma membrane markers. When microsomal vesicles were treated with digitonin, NAD glycohydrolase activity and plasma membranes specifically increased in density. We conclude that in calf spleen the bulk of NAD glycohydrolase is associated with plasma membranes. Microsomal NAD glycohydrolase was associated with sealed vesicles; its activity could not be increased by disruption of the sidedness of the vesicles. This result and further observations based on the known restricted permeability of biological membranes to charged substances, and on the activity of the enzyme with non-penetrating substrates and inhibitors, indicate that the NAD glycohydrolase active site is located on the exterior side of the vesicles. It is proposed that calf spleen NAD glycohydrolase is an ecto-enzyme.  相似文献   

3.
NAD+ glycohydrolase (NAD+ nucleosidase, EC 3.2.2.6) can be solubilized from calf spleen microsomes (microsomal fractions) by steapsin or by detergents to yield respectively a hydrophilic (i.e. water-soluble) and a hydrophobic form of the enzyme. The detergent-solubilized enzyme was successfully reassociated into phosphatidylcholine liposomes either by a cholate-dialysis or by a gel-filtration procedure. In both cases the incorporation of NAD+ glycohydrolase was found to be completely asymmetric, i.e. the active site of the enzyme was exposed only at the outer surface of the vesicles. By contrast, as judged by flotation experiments, the hydrophilic form of NAD+ glycohydrolase could not be reassociated into liposomes. These results are in agreement with the hypothesis that calf spleen NAD+ glycohydrolase is an amphipathic protein. When incorporated into large unilamellar vesicles composed of phosphatidylcholine, NAD+ glycohydrolase was not found to catalyse vectorial transfer of NAD+ by transglycosidation with nicotinamide as acceptor.  相似文献   

4.
Zielinska W  Barata H  Chini EN 《Life sciences》2004,74(14):1781-1790
CD38, a bifunctional enzyme capable of both synthesis and hydrolysis of the second messenger cyclic ADP-ribose (cADPR). Using the natural substrate of the enzyme, NAD+, the ratio of ADP-ribosyl cyclase/NAD glycohydrolase of CD38 is about 1/100. Here we describe that human seminal fluid contain a soluble CD38 like enzyme with an apparent M.W. of 49 kDa. When purified this enzyme has a cyclase/NAD glycohydrolase ratio of about 1/120. However, the in situ cyclase/NAD glycohydrolase ratio measured in seminal plasma approaches 1/1. We also found that physiological concentrations of zinc present in the seminal fluid, in the range of 0.6 to 4 mM, are responsible for the modulation of the cyclase/NAD glycohydrolase ratio. This new information indicates that the cyclase/NAD glycohydrolase ratio can be modified in vivo.  相似文献   

5.
The catalytic properties of membrane-bound calf spleen NAD glycohydrolase were studied in comparison with previous data obtained with a solubilized hydrosoluble form of the enzyme. When the hydrolysis of NAD catalyzed by membrane-bound NAD glycohydrolase was studied at pH values below 7.5, only insignificant interference by other NAD-hydrolyzing enzymes was detected, and no proton-diffusional inhibition was observed. The kinetics could, therefore, be followed using a titrimetric assay for NAD glycohydrolase activity. The effect of pH, ionic strength on the kinetic parameters, and shifts in binding constants for several ligands of the membrane-bound enzyme indicate that the NAD glycohydrolase activity is influenced by an electrostatic potential due to negative charges (polyelectrolyte effect). No significant changes in kinetic mechanism could be found between both NAD glycohydrolase forms. The association of the enzyme with the membrane results in a remarkably increased thermal stability, in changes in binding properties of the active site and in the emergence of new inhibitor binding sites; e.g. adenosine 3':5'-monophosphate (cyclic AMP) and adenosine, which do not inhibit the hydrosoluble form of NAD glycohydrolase, are good inhibitors (respectively competitive and mixed) of the membrane-bound enzyme. These data (i.e. allotopic changes) probably can be ascribed to enzyme conformational changes induced and stabilized by interaction with membrane constituents.  相似文献   

6.
Extracts of Salmonella typhimurium were chromatographed by using Sephadex G-150 to separate the various enzymes involved with pyridine nucleotide cycle metabolism. This procedure revealed a previously unsuspected nicotinamide adenine dinucleotide (NAD) glycohydrolase (EC 3.2.2.5) activity, which was not observed in crude extracts. In contrast to NAd glycohydrolase, NAD pyrophosphatase (EC 3.6.1.22) was readily measured in crude extracts. This enzyme possessed a native molecular weight of 120,000. Other enzymes examined included nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.00), molecular weight of 43,000; NMN glycohydrolase (EC 3.2.2.14), molecular weight of 67,000; nicotinic acid phosphoribosyl transferase (EC 2.4.2.11), molecular weight of 47,000; and nicotinamide deamidase (EC 3.5.1.19), molecular weight of 35,000. NMN deamidase and NMN glycohydrolase activities were both examined for end product repression by measuring their activities in crude extracts prepared from cells grown with and without 10(-5) M nicotinic acid. No repression was observed with either activity. Both activities were also examined for feedback inhibition by NAD, reduced NAD, and NADP. NMN deamidase was unaffected by any of the compounds tested. NMN glycohydrolase was greatly inhibited by NAD and reduced NAD, whereas NADP was much less effective. Inhibition of NMN glycohydrolase was found to level off at an NAD concentration of ca. 1 mN, the approximate intracellular concentration of NAD.  相似文献   

7.
The interaction between the nicotinamide adenine dinucleotide binding domain of calf spleen NAD glycohydrolase and its ligands has been studied. The use of competitive inhibitors, structurally related to different portions of the NAD molecule (i.e. adenosine and nicotinamide moieties), revealed the considerable importance of the binding between the pyrophosphate linkage and probably an arginyl residue of the active site. This interaction allows the positioning of the substrate in a conformation which permits catalysis to occur. The binding between the 2'-hydroxyl of the adenosine moiety and a residue of the active site, which exists in NAD-linked dehydrogenases, is probably missing in the calf spleen NAD glycohydrolase, based on the inhibition by salicylates, 2'-deoxyadenosine 5'-monophosphate and the hydrolysis of the 2'-deoxyadenosine analogue of NAD. The NAD glycohydrolase could be completely inactivated by 2,3-butanedione, an arginyl-modifying reagent. The reaction followed pseudo-first-order kinetics and the modification was found to be reversible. Woodward's reagent K, a reagent for carboxyl residues, partially inactivated the enzyme, which resulted in a change of the NAD glycohydrolase kinetic parameters Km and V. The inactivation rate was complicated by a parallel decomposition of the reagent.  相似文献   

8.
The distribution of nicotinamide adenine dinucleotide (NAD) glycohydrolase in rat liver was investigated by subcellular fractionation and by isolation of hepatocytes and sinusoidal cells. The behavior of NAD glycohydrolase in subcellular fractionation was peculiar because, although the enzyme was mainly microsomal, plasma membrane preparations contained distinctly more NAD glycohydrolase than could be accounted for by their content in elements derived from the endoplasmic reticulum or the Golgi complex identified by glucose-6-phosphatase and galactosyltransferase, respectively. When microsomal and plasmalemmal preparations were brought to equilibrium in a linear-density gradient, NAD glycohydrolase differed from these enzymes and behaved like 5'-nucleotidase and alkaline phosphodiesterase I. NAD glycohydrolase was markedly displaced towards higher densities after treatment with digitonin. This behavior in density-gradient centrifugation strongly suggests that NAD glycohydrolase is an exclusive enzyme of the plasma membrane. NAD glycohydrolase differed clearly from other plasmalemmal enzymes when the liver was fractionated into hepatocytes and sinusoidal cells; its specific activity was considerably greater in sinusoidal cell than in hepatocyte preparations. Further subfractionation of sinusoidal cell preparations into endothelial and Kupffer cells by counterflow elutriation showed that NAD glycohydrolase is more active in Kupffer cells. We estimate that the specific activity of NAD glycohydrolase activity is at least 65-fold higher at the periphery of Kupffer cells than at the periphery of hepatocytes. As the enzyme shows not structure-linked latency and is an exclusive constituent of the plasma membranes, we conclude that it is an ectoenzyme that cannot lead to a rapid turnover of the cytosolic pyridine nucleotides.  相似文献   

9.
Nicotinamide mononucleotide (NMN) is not only an intermediate for the biosynthesis but also a degradation product of pyridine cofactors in animal tissues. Among the animal tissues tested, the highest NMN catabolizing activity was detected in beef liver (5.6 mumol/min/g tissue). This activity was 16 times higher than the NAD hydrolysis catalyzed by the liver NAD glycohydrolase. As a result of enzymatic analysis of the NMN splitting process, two types of enzyme responsible for this catabolism were partially purified and identified as a membrane-bound 5'-nucleotidase and a cytoplasmic nicotinamide riboside (NR) phosphorylase. No specific NMN glycohydrolase could be found in contrast to results observed in bacterial systems. The 5'-nucleotidase and NR phosphorylase constitute an obligatory process of the pyridine nucleotide cycle. The dephosphorylation and phosphorolysis catalyzed suggest that these enzymes could serve as an important mechanism for salvaging the ribose and nicotinamide moieties of NMN and pyridine nucleotides in the cell and a process that could be regulated at the mononucleotide level by this "NMN cycle" rather than by a NAD glycohydrolase cycle. In addition to the enzymatic properties of these enzymes, a regulatory mechanism by nucleotides such as ATP was also demonstrated.  相似文献   

10.
Erythrocytes from cancer patients exhibited up to fivefold higher NAD glycohydrolase activities than control erythrocytes from normal subjects and also similarly increased [14C] ADP-ribose uptake values. When [adenosine-14C] NAD was used instead of free [14C] ADP-ribose, the uptake was dependent on ecto-NAD glycohydrolase activity. This was reflected in the inhibition of ADP-ribose uptake from [adenosine-14C] NAD by Cibacron Blue. ADP-ribose uptake in erythrocytes appeared to be complex: upon incubation with free [14C] ADP-ribose, the radiolabel associated with erythrocytes was located in nearly equal parts in cytoplasm and plasma membrane. Part of [14C] ADP-ribose binding to the membrane was covalent, as indicated by its resistance to trichloroacetic acid-treatment. A preincubation with unlabeled ADP-ribose depressed subsequent erythrocyte NAD glycohydrolase activity and binding of [14C] ADP-ribose to erythrocyte membrane; but it failed to inhibit the transfer of labeled ADP-ribose to erythrocyte cytoplasm. On the other hand, incubation with [adenosine-14C] NAD did not result in a similar covalent binding of radiolabel to erythrocyte membrane. In line with this finding, a preincubation with unlabeled NAD was not inhibitory on subsequent NAD glycohydrolase reaction and ADP-ribose binding. ADP-ribose binding and NAD glycohydrolase activities were found also in solubilized erythrocyte membrane proteins and, after size fractionation, mainly in a protein fraction of around 45kDa-molecular weight.  相似文献   

11.
Mono-ADP-ribosyltransferases (ART1-7) transfer ADP-ribose from NAD+ to proteins (transferase activity) or water (NAD glycohydrolase activity). The mature proteins contain two domains, an alpha-helical amino terminus and a beta-sheet-rich carboxyl terminus. A basic region in the carboxyl termini is encoded in a separate exon in ART1 and ART5. Structural motifs are conserved among ART molecules. Successive amino- or carboxyl-terminal truncations of ART1, an arginine-specific transferase, identified regions that regulated transferase and NAD glycohydrolase activities. In mouse ART1, amino acids 24-38 (ART-specific extension) were needed to inhibit both activities; amino acids 39-45 (common ART coil) were required for both. Successive truncations of the alpha-helical region reduced transferase and NAD glycohydrolase activities; however, truncation to residue 106 enhanced both. Removal of the carboxyl-terminal basic domain decreased transferase, but enhanced NAD glycohydrolase, activity. Thus, amino- and carboxyl-terminal regions of ART1 are required for transferase activity. The enhanced glycohydrolase activity of the shorter mutants indicates that sequences, which are not part of the NAD binding, core catalytic site, exert structural constraints, modulating substrate specificity and catalytic activity. These functional domains, defined by discrete exons or structural motifs, are found in ART1 and other ARTs, consistent with conservation of structure and function across the ART family.  相似文献   

12.
The dinucleotide carbanicotinamide adenine dinucleotide (carba-NAD), in which a 2,3-dihydroxycyclopentane ring replaces the beta-D-ribonucleotide ring of the nicotinamide ribonucleoside moiety of NAD, has been synthesized and characterized enzymologically. The synthesis begins with the known 1-aminoribose analogue (+/-)-4 beta-amino-2 alpha,3 alpha-dihydroxy-1 beta-cyclopentanemethanol. The pyridinium ring is first introduced and the resultant nucleoside analogue specifically 5'-phosphorylated. Coupling the racemic carbanicotinamide 5'-mononucleotide with adenosine 5'-monophosphate produces two diastereomeric carba-NAD analogues which are chromatographically separable. Only one diastereomer is a substrate for alcohol dehydrogenase and on this basis is assigned a configuration analogous to D-ribose. The reduced dinucleotide carba-NADH was characterized by fluorescence spectroscopy and found to adopt a "stacked" conformation similar to that of NADH. The analogue is reduced by both yeast and horse liver alcohol dehydrogenase with Km and Vmax values for the analogue close to those observed for NAD. Carba-NAD is resistant to cleavage by NAD glycohydrolase, and the analogue has been demonstrated to noncovalently inhibit the soluble NAD glycohydrolase from Bungarus fasciatus venom at low concentrations (less than or equal to 100 microM).  相似文献   

13.
A new screening technique has been developed for the rapid identification of Neurospora crassa mutants that are deficient in nicotinamide adenine dinucleotide glycohydrolase (NADase) and nicotinamide adenine dinucleotide phosphate glycohydrolase (NADPase) activities. Using this procedure, five single-gene mutants were isolated whose singular difference from wild type appeared to be the absence of NAD(P)ase (EC 3.2.2.6). All five mutants were found to be genetically allelic and did not complement in heterocaryons. This gene, nada [NAD(P)ase], was localized in linkage group IV. One of the nada alleles was found to specify an enzyme that was critically temperature sensitive and had altered substrate affinity. Mutations at the nada locus did not affect the genetic program for the expression of NAD(P)ase during cell differentiation, nor did they have a general effect on NAD catabolism. Nada mutations did not have simultaneous effects on other glycohydrolase activities. Tests of dominance (in heterocaryons) and in vitro mixing experiments did not provide evidence that nada mutations alter activators or inhibitors of NAD(P)ase. Thus, the nada gene appears to specify only the structure of N. crassa NAD(P)ase.  相似文献   

14.
ADP-Ribosylation of Highly Purified Rat Brain Mitochondria   总被引:1,自引:0,他引:1  
Highly purified synaptic and nonsynaptic mitochondria were prepared from rat brain, and their ADP-ribosyl transferase and NAD glycohydrolase activities were investigated. Data show that there is no significant difference in ADP-ribosyl transferase activity between these two types of subcellular preparations. However, NAD glycohydrolase activity appeared to be much higher in nonsynaptic mitochondria. The specific activity of both enzymes was investigated in the presence of the inhibitor nicotinamide or its analogue 3-aminobenzamide or other adenine nucleotides, such as ATP or ADP-ribose. The inhibitory effect of nicotinamide or 3-aminobenzamide on ADP-ribosyl transferase appears rather weak compared with their effect on NAD glycohydrolase activity. However, ADP-ribose and ATP appeared more effective in inhibiting ADP-ribosyl transferase. Our results provide evidence for the existence of ADP-ribosyl transferase activity in rat brain mitochondria. When NAD glycohydrolase was inhibited totally by nicotinamide, the transfer of ADP-ribose from NAD to mitochondrial proteins still occurred. The chain length determinations show that the linkage of ADP-ribose to mitochondrial proteins is oligomeric.  相似文献   

15.
Adenine nucleotides promote dissociation of pertussis toxin subunits   总被引:11,自引:0,他引:11  
Pertussis toxin is composed of an enzymatically active A subunit and a binding component (B oligomer). Both the holotoxin and the isolated A subunit have previously been shown to exhibit NAD glycohydrolase activity although the A subunit is more active on a molar basis than the holotoxin. We have investigated the mechanism by which ATP stimulates the activity of this toxin. Since dissociation of pertussis toxin subunits would result in increased NAD glycohydrolase activity, the ability of ATP to promote release of the A subunit from the B oligomer was examined. In the presence of the zwitterionic detergent 3-(3-cholamidopropyldimethyl)-1-ammonio)-propanesulfonate, concentrations of ATP as low as 1 microM promoted subunit dissociation. The concentration of ATP required for release of the A subunit was similar to that required for stimulation of NAD glycohydrolase activity. Both ATP and ADP promoted subunit dissociation and stimulated NAD glycohydrolase activity. In contrast, AMP and adenosine did not alter NAD glycohydrolase activity or affect subunit structure. The ability of ATP to decrease the affinity of the A subunit for the B oligomer may play a role in nucleotide stimulation of pertussis toxin activity.  相似文献   

16.
Bovine thyroid membranes possess both ADP ribosyltransferase and NAD glycohydrolase activities with the same Km values for NAD and the same pH optima. In intact membranes, the ADP ribosyltransferase is limited in its extent by the amount of available membrane acceptor which can be ADP-ribosylated; in membranes solubilized with lithium diiodosalicylate, an artificial acceptor, L-arginine methyl ester, can be substituted to eliminate this limitation. The product of the ADP ribosyltransferase is a mono-ADP-ribosylated acceptor whether the intact or solubilized membrane provides the enzyme activity and whether membrane or exogenous acceptor, L-arginine methyl ester, is utilized. The intact membranes and the solubilized preparation also have an enzyme activity which can release AMP from the mono-ADP-ribosylated acceptor whether formed by the action of the membrane ADP ribosyltransferase or the A promoter of cholera toxin. The NAD glycohydrolase activity appears to represent the half-reaction of the ADP ribosyltransferase, i.e. an activity measurable substituting water for a membrane acceptor or L-arginine methyl ester. Membranes from functional rat thyroid cells in culture, i.e. cells chronically stimulated by thyrotropin and unresponsive to further additions of thyrotropin, have low ADP-ribosylation but high NAD glycohydrolase activities. In contrast, membranes from nonfunctional rat thyroid cells, i.e. cells unresponsive to thyrotropin, have high ADP-ribosylation and low NAD glycohydrolase activities. NAD hydrolysis by the NAD glycohydrolase activity cannot account for the low ADP-ribosylation activity in membranes from the functioning cells, and its low level of ADP-ribosylation can be eliminated by solubilizing the membranes and substituting an artificial acceptor, L-arginine methyl ester. The ADP ribosyltransferase activity of rat thyroid cell membrane preparations can be enhanced by thyrotropin in a dose-dependent manner but not by insulin, glucagon, hydrocortisone, adrenocorticotropin, or its glycoprotein hormone analog, human chorionic gonadotropin. It is thus suggested (i) that, in analogy to cholera toxin, thyrotropin-stimulated ADP-ribosylation may be important in the regulation of the adenylate cyclase response and (ii) that the level of membrane acceptor available for ADP-ribosylation may relate both to a stable "'activated" state of the adenylate cyclase system in cells chronically stimulated with thyrotropin and/or to a desensitized state with regard to a failure of more thyrotropin to elicit additional functional responses.  相似文献   

17.
NAD glycohydrolases are the longest known enzymes that catalyze ADP-ribose transfer. The function of these ubiquitous, membrane-bound enzymes has been a long standing puzzle. The NAD glycohydrolase are briefly reviewed in light of the discovery by our laboratory that NAD glycohydrolases are bifunctional enzymes that can catalyze both the synthesis and hydrolysis of cyclic ADP-ribose, a putative second messenger of calcium homeostasis.Abbreviations NADase nicotinamide adenine dinucleotide glycohydrolase - NAD nicotinamide adenine dinucleotide - ADP-ribose adenosine diphosphoribose - cADPR cyclic adenosine diphosphoribose  相似文献   

18.
A marked difference was found to exist between the nicotinamide adenine dinucleotide (NAD) glycohydrolase activity of human strains of Mycobacterium tuberculosis as compared with bovine strains. Human strains had from 6- to 20-fold higher NAD glycohydrolase activity than bovine strains. This finding explains the accumulation of free nicotinic acid in the culture medium by human strains and not by bovine strains. The biosynthetic intermediates nicotinic acid mononucleotide and deamido-NAD were not degraded by either human or bovine strains of M. tuberculosis; hence these nucleotides do not represent a source of the nicotinic acid accumulated by the human strains.  相似文献   

19.
H R Kaslow  D D Lesikar 《Biochemistry》1987,26(14):4397-4402
The combination of ATP, CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate), and DTT (dithiothreitol) is known to promote the expression of the NAD glycohydrolase activity of pertussis toxin, which resides in the toxin's S1 subunit. By monitoring changes in electrophoretic mobility, we have found that ATP and CHAPS act by promoting the reduction of the disulfide bond of the S1 subunit. In addition, ATP, CHAPS, and DTT allowed sulfhydryl-alkylating reagents to inactivate the NAD glycohydrolase activity. In the presence of iodo[14C]acetate, the combination of ATP, CHAPS, and DTT increased 14C incorporation into only the S1 subunit of the toxin, indicating that alkylation of this subunit was responsible for the loss of activity. If iodoacetate is used as the alkylating reagent, alkylation can be monitored by an acidic shift in the isoelectric point of the S1 peptide. Including NAD in alkylation reactions promoted the accumulation of a form of the S1 peptide with an isoelectric point intermediate between that of native S1 and that of S1 alkylated in the absence of NAD. This result suggests that NAD interacts with one of the two cysteines of the S1 subunit. In addition, we found the pH optimum for the NAD glycohydrolase activity of pertussis toxin is 8, which may reflect the participation of a cysteine in the catalytic mechanism of the toxin.  相似文献   

20.
J T Slama  A M Simmons 《Biochemistry》1989,28(19):7688-7694
Analogues of oxidized nicotinamide adenine dinucleotide (NAD+) in which a 2,3-dihydroxycyclopentane ring replaces the beta-D-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ have recently been synthesized [Slama, J. T., & Simmons, A. M. (1988) Biochemistry 27, 183]. Carbocyclic NAD+ analogues have been shown to inhibit NAD glycohydrolases and ADP-ribosyl transferases such as cholera toxin A subunit. In this study, the diastereomeric mixture of dinucleotides was separated, and the inhibitory capacity of each of the purified diastereomers was defined. The NAD+ analogue in which the D-dihydroxycyclopentane is substituted for the D-ribose is designated carba-NAD and was demonstrated to be a poor inhibitor of the Bungarus fasciatus venom NAD glycohydrolase. The diastereomeric dinucleotide pseudo-carbocyclic-NAD (psi-carba-NAD), containing L-dihydroxycyclopentane in place of the D-ribose of NAD+, was shown, however, to be a potent competitive inhibitor of the venom NAD glycohydrolase with an inhibitor dissociation constant (Ki) of 35 microM. This was surprising since psi-carba-NAD contains the carbocyclic analogue of the unnatural L-ribotide and was therefore expected to be a biologically inactive diastereomer. psi-Carba-NAD also competitively inhibited the insoluble brain NAD glycohydrolase from cow (Ki = 6.7 microM) and sheep (Ki = 31 microM) enzyme against which carba-NAD is ineffective. Sensitivity to psi-carba-NAD was found to parallel sensitivity to inhibition by isonicotinic acid hydrazide, another NADase inhibitor. psi-Carba-NAD is neither a substrate for nor an inhibitor of alcohol dehydrogenase, whereas carba-NAD is an efficient dehydrogenase substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号