首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major 70 kDa protein of the yeast mitochondrial outer membrane is coded by a nuclear gene, synthesized on cytoplasmic ribosomes, and transported to the mitochondrial outer membrane. In order to investigate in detail the information necessary for localizing the 70 kDa protein at the outer membrane, we have examined the intracellular and intramitochondrial location of fusion proteins which consist of various lengths of the amino-terminal region of the 70 kDa protein with an enzymatically active beta-galactosidase. The results indicate that the extreme amino-terminal 12 amino acids of the 70 kDa protein function as a targeting sequence, whereas the subsequent uncharged region (up to residue 29) is necessary for "stop-transfer" and "anchoring" functions. Moreover, we have found that a fusion protein which contained the amino-terminal 19 amino acids of the 70 kDa protein is localized on the outer membrane as well as in the matrix space. Changes in the dual localization of this fusion protein accompanied its overproduction or expression in a respiration-deficient yeast mutant.  相似文献   

2.
The amino-terminal region of a 70 kDa mitochondrial outer membrane protein of yeast and the presequence of cytochrome c1, an inner membrane protein exposed to the intermembrane space, are thought to be responsible for localizing the proteins in their final destinations after synthesis in the cytosol. Gene fusion experiments were used to identify signals that are responsible for protein sorting between the outer and inner mitochondrial membranes. The submitochondrial localization of cytochrome c1 whose presequence was replaced by the amino-terminal region of the 70 kDa mitochondrial outer membrane protein has been investigated. We have also used an in vivo complementation assay to determine whether or not a 70k-cyt c1 fusion protein is functional. Both the first half and all of the presequence of cytochrome c1 can be replaced by the amino-terminal 12 or 29 residues of the 70 kDa protein for transport to the inner membrane and functional assembly into succinate-cytochrome c reductase. However, replacements by the amino-terminal 61 residues of the 70 kDa protein result in exclusive localization of the fusion proteins to the outer membrane, and the fusions cannot be assembled into the enzyme complex. These data indicate that a mitochondrial targeting signal alone is sufficient to direct cytochrome c1 of mature size to the inner membrane.  相似文献   

3.
L Ramage  T Junne  K Hahne  T Lithgow    G Schatz 《The EMBO journal》1993,12(11):4115-4123
We have identified a 20 kDa yeast mitochondrial outer membrane protein (termed MAS20) which appears to function as a protein import receptor. We cloned, sequenced and physically mapped the MAS20 gene and found that the protein is homologous to the MOM19 import receptor from Neurospora crassa. MAS20 and MOM19 contain the sequence motif F-X-K-A-L-X-V/L, which is repeated several times with minor variations in the MAS70/MOM72 receptors. To determine how MAS20 functions together with the previously identified yeast receptor MAS70, we constructed yeast mutants lacking either one or both of the receptors. Deletion of either receptor alone had little or no effect on fermentative growth and only partially inhibited mitochondrial protein import in vivo. Deletion of both receptors was lethal. Deleting only MAS70 did not affect respiration; deleting only MAS20 caused loss of respiration, but respiration could be restored by overexpressing MAS70. Import of the F1-ATPase beta-subunit into isolated mitochondria was only partly inhibited by IgGs against either MAS20 or MAS70, but both IgGs inhibited import completely. We conclude that the two receptors have overlapping specificities for mitochondrial precursor proteins and that neither receptor is by itself essential.  相似文献   

4.
Cross-linking analysis of yeast mitochondrial outer membrane   总被引:2,自引:0,他引:2  
By enrichment of contact sites between the two mitochondrial boundary membranes it has been shown that this fraction contained a high activity of glutathione transferase and hexokinase which was bound to the outer membrane pore protein (Ohlendieck, K. et al. (1986) Biochim. Biophys. Acta 860, 672-689). Therefore, an interaction between the three proteins in the contact sites has been suggested. Cross-linking experiments with isolated outer membrane of yeast mitochondria show that glutathione transferase and the pore protein are already associated in the free outer membrane. Porin appeared to adopt four different oligomeric complexes in the membrane, including interactions with a 14 kDa polypeptide, which has glutathione transferase activity. The latter polypeptide could be phosphorylated by intrinsic or extrinsic protein kinases, while the porin itself was not phosphorylated. Yeast hexokinase, when bound to the outer membrane, was able to cross-link to the pore protein.  相似文献   

5.
One of the major outer membrane proteins of yeast mitochondria was isolated and purified. It migrated as a single band with an apparent molecular weight of 30 kDa on a SDS-electrophoretogram. When reconstituted in lipid bilayer membranes the protein formed pores with a single channel conductance of 0.45 nS in 0.1 M KCl. The pores had the characteristics of general diffusion pores with an estimated diameter of 1.7 nm. The pore of mitochondrial outer membranes of yeast shared some similarities with the pores formed by mitochondrial and bacterial porins. The pores switched to substates at voltages higher than 20 mV. The possible role of this voltagedependence in the metabolism of mitochondria is discussed.  相似文献   

6.
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.  相似文献   

7.
Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with mitochondria in vivo. This supports earlier cell fractionation and microarray-based studies that proposed mMP association with the mitochondrial fraction. Interestingly, a number of mMPs showed a dependency on the mitochondrial Puf3 RNA-binding protein, as well as nonessential proteins of the translocase of the outer membrane (TOM) complex import machinery, for normal colocalization with mitochondria. We examined the specific determinants of ATP2 and OXA1 mRNA localization and found a mutual dependency on the 3' UTR, Puf3, Tom7, and Tom70, but not Tom20, for localization. Tom6 may facilitate the localization of specific mRNAs as OXA1, but not ATP2, mRNA was mislocalized in tom6Δ cells. Interestingly, a substantial fraction of OXA1 and ATP2 RNA granules colocalized with the endoplasmic reticulum (ER) and a deletion in MDM10, which mediates mitochondria-ER tethering, resulted in a significant loss of OXA1 mRNA localization with ER. Finally, neither ATP2 nor OXA1 mRNA targeting was affected by a block in translation initiation, indicating that translation may not be essential for mRNA anchoring. Thus, endogenously expressed mRNAs are targeted to the mitochondria in vivo, and multiple factors contribute to mMP localization.  相似文献   

8.
The outer membrane of yeast mitochondria was studied with respect to its lipid composition, phospholipid topology and membrane fluidity. This membrane is characterized by a high phospholipid to protein ratio (1.20). Like other yeast cellular membranes the outer mitochondrial membrane contains predominantly phosphatidylcholine (44% of total phospholipids), phosphatidylethanolamine (34%) and phosphatidylinositol (14%). Cardiolipin, the characteristic phospholipid of the inner mitochondrial membrane (13% of total phospholipids) is present in the outer membrane only to a moderate extent (5%). The ergosterol to phospholipid ratio is higher in the inner (7.0 wt%) as compared to the outer membrane (2.1 wt.%). Attempts to study phospholipid asymmetry by selective degradation of phospholipids of the outer leaflet of the outer mitochondrial membrane failed, because isolated right-side-out vesicles of this membrane became leaky upon treatment with phospholipases. Selective removal of phospholipids of the outer leaflet with the aid of phospholipid transfer proteins and chemical modification with trinitrobenzenesulfonic acid on the other hand, gave satisfactory results. Phosphatidylcholine and phosphatidylinositol are more or less evenly distributed between the two sides of the outer mitochondrial membrane, whereas the majority of phosphatidylethanolamine is oriented towards the intermembrane space. The fluidity of mitochondrial membranes was determined by measuring fluorescence anisotropy using diphenylhexatriene (DPH) as a probe. The lower anisotropy of DPH in the outer as compared to the inner membrane, which is an indication for an increased lipid mobility in the outer membrane, was attributed to the higher phospholipid to protein and the lower ergosterol to phospholipid ratio. The data presented here show, that the outer mitochondrial membrane, in spite of its close contact to the inner membrane, is distinct not only with respect to its protein pattern, but also with respect to its lipid composition and physical membrane properties.  相似文献   

9.
A majority of the proteins targeted to the mitochondria are transported through the translocase of the outer membrane (TOM) complex. Tom70 is a major surface receptor for mitochondrial protein precursors in the TOM complex. To investigate how Tom70 receives the mitochondrial protein precursors, we have determined the crystal structure of yeast Tom70p to 3.0 A. Tom70p forms a homodimer in the crystal. Each subunit consists primarily of tetratricopeptide repeat (TPR) motifs, which are organized into a right-handed superhelix. The TPR motifs in the N-terminal domain of Tom70p form a peptide-binding groove for the C-terminal EEVD motif of Hsp70, whereas the C-terminal domain of Tom70p contains a large pocket that may be the binding site for mitochondrial precursors. The crystal structure of Tom70p provides insights into the mechanisms of precursor transport across the mitochondrion's outer membrane.  相似文献   

10.
K Mihara  R Sato 《The EMBO journal》1985,4(3):769-774
We have cloned a full-length cDNA for yeast porin, the major outer mitochondrial membrane protein from Saccharomyces cerevisiae, and determined its nucleotide sequence. The primary structure of the protein, deduced from the nucleotide sequence, consisted of 283 amino acid residues and its NH2-terminal sequence, Met-Ser-Pro-Pro-Val-Tyr-Ser, coincided with that determined by Edman degradation for yeast porin, except that the initiator methionine was missing in the mature protein. The deduced sequence had an overall polarity index of 46.3%, a value which falls in the normal range for soluble proteins. An evaluation of hydropathy of the protein indicated that the NH2-terminal one third was relatively hydrophilic and the rest of the molecule was rather hydrophobic. An interesting finding was that the NH2-terminal region of yeast porin (consisting of some 50 amino acid residues) shows structural features that resemble those of the corresponding portion of 70-kd protein, which is also a yeast outer mitochondrial membrane protein. We postulate that this NH2-terminal sequence, like that of 70-kd protein, is required for targeting the porin to the outer mitochondrial membrane.  相似文献   

11.
The protein(s) responsible for metabolite transport through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria depleted of mitochondrial porin (also known as voltage-dependent anion selective channel), termed here porin1, is (are) still unidentified. It is postulated that the transport may be supported by the protein import machinery of the outer membrane, the TOM complex (translocase of the outer membrane). We demonstrate here that in the absence of functional porin1, the blockage of the TOM complex by the fusion protein termed pb(2)-DHFR (consisting of the first 167 amino acids of yeast cytochrome b(2) preprotein connected to mouse dihydrofolate reductase) limits the access of external NADH to mitochondria. It was measured by the ability of the blockage to inhibit external NADH oxidation by the proper dehydrogenase located at the outer surface of the inner membrane. The inhibition depends on external NADH concentration and increases with decreasing amounts of the substrate. In the presence of 1 microg of pb(2)-DHFR per 50 microg of mitochondrial protein almost quantitative inhibition was observed when external NADH was applied at the concentration of 70 nmol per mg of mitochondrial protein. On the other hand, external NADH decreases the levels of pb(2)-DHFR binding at the trans site of the TOM complex in porin1-depleted mitochondria in a concentration-dependent fashion. Our data define an important role of the TOM complex in the transport of external NADH across the outer membrane of porin1-depleted mitochondria.  相似文献   

12.
E C Hurt  U Müller    G Schatz 《The EMBO journal》1985,4(13A):3509-3518
We have used an in vivo complementation assay to test whether a given polypeptide sequence can direct an attached protein to the mitochondrial inner membrane. The host is a previously described yeast deletion mutant that lacks cytochrome oxidase subunit IV (an imported protein) and, thus neither assembles cytochrome oxidase in its mitochondrial inner membrane nor grows on the non-fermentable carbon source, glycerol. Growth on glycerol and cytochrome oxidase assembly are restored to the mutant if it is transformed with the gene encoding authentic subunit IV precursor, a protein carrying a 25-residue transient pre-sequence. No restoration is seen with a plasmid encoding a subunit IV precursor whose pre-sequence has been shortened to seven residues. Partial, but significant restoration is achieved by an artificial subunit IV precursor in which the authentic pre-sequence has been replaced by the first 12 amino acids of a 70-kd protein of the mitochondrial outer membrane. If this dodecapeptide is fused to the amino terminus of mouse dihydrofolate reductase (a cytosolic protein), the resulting fusion protein is imported into the matrix of yeast mitochondria in vitro and in vivo. Import in vitro requires an energized inner membrane. We conclude that the extreme amino terminus of the 70-kd outer membrane protein can direct an attached protein across the mitochondrial inner membrane.  相似文献   

13.
T Hase  H Riezman  K Suda    G Schatz 《The EMBO journal》1983,2(12):2169-2172
The nucleotide sequence of the yeast chromosomal gene coding for the 70-kd protein of the mitochondrial outer membrane was determined. The deduced amino acid sequence of the protein agrees with the experimentally determined size and amino acid composition of the purified protein and correctly predicts the fragments obtained by cleaving the protein at its single tryptophan residue. The deduced NH2-terminal sequence features an uninterrupted stretch of 28 uncharged amino acids flanked on both sides by basic amino acids. By sequencing a truncated version of the gene it was found that the corresponding polypeptide product lacks the 203 carboxy-terminal amino acids of the authentic 70-kd protein. As shown in the accompanying paper, this protein fragment still becomes attached to the mitochondrial outer membrane in vivo.  相似文献   

14.
15.
The major 70-kd protein of the yeast mitochondrial outer membrane is made on cytosolic ribosomes and imported into the outer membrane without proteolytic cleavage. We have attempted to identify the sequences which target the protein to the mitochondria and which permanently anchor it to the lipid bilayer of the outer membrane. By manipulating the cloned gene we have deleted 13 different regions throughout the polypeptide; in addition, we have fused amino-terminal regions of different length to beta-galactosidase. Each altered gene was introduced into yeast and the intracellular fate of the corresponding polypeptide product was determined by subcellular fractionation. All the information for targeting and anchoring the 70-kd protein (617 amino acids) was contained within the amino-terminal 41 amino acids. When this entire region was deleted, the protein was recovered with the cytosol fraction. However, several restricted deletions within this amino-terminal region appeared to affect targeting and anchoring differentially: most of the altered protein remained in the cytosol but a small fraction was misrouted into the mitochondrial matrix space. We suggest that targeting is mediated by a region which includes the 11 amino-terminal amino acids whereas the permanent membrane anchor is provided by a typical transmembrane sequence between residues 9 and 38.  相似文献   

16.
Summary The outer mitochondrial membranes of all organisms so far examined contain a protein which forms voltage-dependent anion selective channels (VDAC) when incorporated into planar phospholipid membranes. Previous reports have suggested that the yeast (Saccharomyces cerevisiae) outer mitochondrial membrane component responsible for channel formation is a protein of 29,000 daltons which is also the major component of this membrane. In this report, we describe the purification of this 29,000-dalton protein to virtual homogeneity from yeast outer mitochondrial membranes. The purified protein readily incorporates into planar phospholipid membranes to produce ionic channels. Electrophysiological characterization of these channels has demonstrated they have a size, selectivity and voltage dependence similar to VDAC from other organisms. Biochemically, the purified protein has been characterized by determining its amino acid composition and isoelectric point (pI). In addition, we have shown that the purified protein, when reconstituted into liposomes, can bind hexokinase in a glucose-6-phosphate dependent manner, as has been shown for VDAC purified from other sources. Since physiological characterization suggests that the functional parameters of this protein have been conserved, antibodies specific to yeast VDAC have been used to assess antigenic conservation among mitochondrial proteins from a wide number of species. These experiments have shown that yeast VDAC antibodies will recognize single mitochondrial proteins fromDrosophila, Dictyostelium andNeurospora of the appropriate molecular weight to be VDAC from these organisms. No reaction was seen to any mitochondrial protein from rat liver, rainbow trout,Paramecium, or mung bean. In addition, yeast VDAC antibodies will recognize a 50-kDa mol wt protein present in tobacco chloroplasts. These results suggest that there is some antigenic as well as functional conservation among different VDACs.  相似文献   

17.
Mitochondria consist of four compartments-outer membrane, intermembrane space, inner membrane, and matrix--with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of approximately 85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sj?gren-Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.  相似文献   

18.
The bcl-2 gene encodes a 26kDa protein which functions as a central regulator of apoptosis. Here we investigated the pathway of Bcl-2alpha into the mitochondrial outer membrane using the yeast Saccharomyces cerevisiae as a model organism. We found that interactions of Bcl-2alpha with the mitochondrial import receptor Tom20 are dependent on two positively charged lysine residues in the immediate vicinity of the carboxy-terminal hydrophobic membrane anchor. The targeting function of these residues is independent of Tom22. Subsequent insertion of Bcl-2alpha into the mitochondrial outer membrane does not require Tom5 or Tom40, indicating that Bcl-2alpha bypasses the general import pore (GIP). Bcl-2alpha shows a unique pattern of interactions with the components of the mitochondrial TOM complex, demonstrating that at least two different pathways lead from the import receptor Tom20 into the mitochondrial outer membrane.  相似文献   

19.
As part of an analysis of the function and assembly of the mitochondrial outer membrane, we have cloned and characterized the yeast gene encoding a 45-kDa polypeptide (OM45) which is a major constituent of this membrane. The nuclear gene was isolated by immunological screening of plaques of recombinant phage lambda gt11 containing fragments of yeast genomic DNA using an antibody against OM45. Determination of the nucleotide sequence of the DNA fragment isolated by this approach revealed a single open reading frame of 1179 base pairs which encodes a protein having a predicted molecular mass of 44.6-kDa. Disruption of the OM45 gene in haploid yeast cells eliminated the expression of OM45. The mutant strain showed no apparent defect in cell viability, growth, mitochondrial function, or mitochondrial protein import.  相似文献   

20.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both promitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号